
B.Sc. (Mathematics)
VI - Semester

113 61

DISCRETE MATHEMATICS

Directorate of Distance Education

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

"The copyright shall be vested with Alagappa University"

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

Work Order No.AU/DDE/DE12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies - 500

Authors:
N Ch S N Iyengar, Professor, Deptt of Computer Applications, Vellore Institute of Technology, Vellore
V M Chandrasekaran, Asstt Professor, Deptt of Mathematics, Vellore Institute of Technology, Vellore
K A Venkatesh, Head - Deptt of Computer Applications, Alliance Business Academy, Bangalore
P S Arunachalam, Senior Lecturer, Department of Mathematics, SRM Engineering College, Chennai
Units (1.0-1.2, 1.3-1.5, 2.0-2.3, 4.0-4.3, 5, 6, 7.0-7.2.1, 7.2.3-7.2.4, 9.0-9.2, 9.4-9.7, 10.3, 11.0-11.2, 12, 13, 14.3-14.4, 14.6-14.8)
Vikas®Publishing House, Units (1.2.1, 1.6-1.10, 2.4-2.10, 3, 4.4-4.9, 7.2.2, 7.3-7.9, 8, 9.3, 9.8-9.12, 10.0-10.2, 10.4-10.12,
11.3-11.9, 14.0-14.2, 14.5, 14.9-14.13)

SYLLABI-BOOK MAPPING TABLE
Discrete Mathematics

Syllabi Mapping in Book

Unit 1: Mathematical Logic
(Pages 3-19)

Unit 2: Tautology
(Pages 20-42)

Unit 3: Normal Forms
(Pages 43-50)

Unit 4: Inference Theory
(Pages 51-57)

Unit 5: Quantifiers
(Pages 58-71)

Unit 6: Relations
(Pages 72-90)

Unit 7: Lattices
(Pages 91-114)

Unit 8: Coding Theory
(Pages 115-138)

Unit 9: Graph Theory
(Pages 139-156)

Unit 10: Circuit Matrix
(Pages 157-178)

Unit 11: Chromatic Numbers
(Pages 179-193)

Unit 12: Trees
(Pages 194-209)

BLOCK I: LOGIC, TAUTOLOGY AND THEORY OF INFERENCE
UNIT - 1
Logic Introduction – Connectives – Atomic and Compound Statements –
Truth Table – Problems.
UNIT - 2
Tautology – Tautological Implications and Equivalence of Formulae –
Replacement Process - Law of Duality - Tautological Implications.
UNIT - 3
Normal Forms – Principal Normal Forms - Problems.
UNIT - 4
Theory of Inference - Rules of Inference - Open Statements – Problems.

BLOCK II: QUANTIFIERS, LATTICES AND CODING THEORY
UNIT - 5
Quantifiers – Bound and Free Variables - Theory of Inference for Predicate
Calculus.
UNIT - 6
Relations – Representation of a Relation – Operations on Relations –
Equivalence Relation.
UNIT - 7
Lattices – Some Properties of Lattices, New Lattices – Modular and
Distributive Lattices - Boolean Algebra, Boolean Polynomials.
UNIT - 8
Coding Theory – Introduction – Hamming Distance – Encoding a Message
– Group Codes – Procedure for Generating Group Codes – Decoding and
Error Correction.

BLOCK III: MATRIX OF A GRAPH AND CHROMATIC NUMBERS
UNIT - 9
Definition of a Graph – Finite and Infinite Graphs – Incidence, Degree,
Isolated and Pendent Vertices – Isomorphism –Sub Graphs – Walks , Paths
and Circuits –Connected and Disconnected Graphs.
UNIT - 10
Matrix Representation of a Graph – Incidence Matrix – Circuit Matrix -
Fundamental Circuit Matrix and Rank of the Circuit Matrix – Cut Set Matrix –
Adjacency Matrix.
UNIT - 11
Chromatic Number - Chromatic Partitioning – Chromatic Polynomial -
Problems.

BLOCK IV: TREES AND CUT SETS
UNIT - 12
Trees – Properties of Trees – Pendent Vertices in a Tree – Distances and
Centres in a Tree – Rooted and Binary Trees.

UNIT - 13
Spanning Trees – Fundamental Circuits – Finding All Spanning Trees of a
Graph – Spanning Trees in a Weighted Graph.
UNIT - 14
Cut Sets – Properties of a Cut Set – All Cut Sets in a Graph – Fundamental
Circuits and Cut Sets – Connectivity and Separability - Eulerian and Hamiltonian
Graphs –Problems.

Unit 13: Spanning Trees
(Pages 210-218)

Unit 14: Cut Sets And Connectivity
of Graphs

(Pages 219-242)

BLOCK I: LOGIC, TAUTOLOGY AND THEORY OF INFERENCE

UNIT 1 MATHEMATICAL LOGIC 3-19
1.0 Introduction
1.1 Objectives
1.2 Mathematical Logic: An Introduction

1.2.1 Atomic and Compound Statements
1.3 Connectives

1.3.1 Conjunction
1.3.2 Disjunction
1.3.3 Negation

1.4 Logical Operators
1.5 Truth Table
1.6 Answers to Check Your Progress Questions
1.7 Summary
1.8 Key Words
1.9 Self Assessment Questions and Exercises

1.10 Further Readings

UNIT 2 TAUTOLOGY 20-42
2.0 Introduction
2.1 Objectives
2.2 Tautology
2.3 Tautological Implications and Equivalence of Formulae

2.3.1 Equivalence and Implication
2.4 Replacement Process
2.5 Law of Duality
2.6 Answers to Check Your Progress Questions
2.7 Summary
2.8 Key Words
2.9 Self Assessment Questions and Exercises

2.10 Further Readings

UNIT 3 NORMAL FORMS 43-50
3.0 Introduction
3.1 Objectives
3.2 Normal and Principal Forms
3.3 Answers to Check Your Progress Questions
3.4 Summary
3.5 Key Words
3.6 Self Assessment Questions and Exercises
3.7 Further Readings

UNIT 4 INFERENCE THEORY 51-57
4.0 Introduction
4.1 Objectives
4.2 Theory of Inference

CONTENTS

4.3 Rules of Inference
4.4 Open Statement
4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self Assessment Questions and Exercises
4.9 Further Readings

BLOCK - II QUANTIFIERS, LATTICES AND CODING THEORY

UNIT 5 QUANTIFIERS 58-71
5.0 Introduction
5.1 Objectives
5.2 Quantifiers
5.3 Bound and Free Variables
5.4 Theory of Inference for Predicate Calculus

5.4.1 Statement Calculus
5.4.2 Rule CP (Conditional Proof)
5.4.3 Consistent and Inconsistent

5.5 Answers to Check Your Progress Questions
5.6 Summary
5.7 Key Words
5.8 Self Assessment Questions and Exercises
5.9 Further Readings

UNIT 6 RELATIONS 72-90
6.0 Introduction
6.1 Objectives
6.2 Relations and Ordering

6.2.1 Binary Relation
6.3 Representation of a Solution
6.4 Equivalence Relations and Partition
6.5 Graphs of Relations
6.6 Properties of Relations
6.7 Answers to Check Your Progress Questions
6.8 Summary
6.9 Key Words

6.10 Self Assessment Questions and Exercises
6.11 Further Readings

UNIT 7 LATTICES 91-114
7.0 Introduction
7.1 Objectives
7.2 Lattice

7.2.1 Properties of Lattice
7.2.2 New Lattice
7.2.3 Distributive Lattice
7.2.4 Sublattice

7.3 Boolean Algebra
7.4 Boolean Polynomials

7.4.1 Precedence of Operators
7.4.2 Truth Table
7.4.3 Complement of Functions
7.4.4 Standard Forms
7.4.5 Minterm and Maxterm
7.4.6 Canonical Form: Sum of Minterms
7.4.7 Canonical Form: Product of Maxterms
7.4.8 Conversion of Canonical Forms
7.4.9 Boolen Algebra as Lattices

7.4.10 Atom
7.5 Answers to Check Your Progress Questions
7.6 Summary
7.7 Key Words
7.8 Self Assessment Questions and Exercises
7.9 Further Readings

UNIT 8 CODING THEORY 115-138
8.0 Introduction
8.1 Objectives
8.2 Computer Codes

8.2.1 Binary Coded Decimal (BCD)
8.2.2 Extended Binary Coded Decimal Interchange (EBCDIC)
8.2.3 American Standard Code for Information Interchange (ASCII)
8.2.4 Excess-3 Code
8.2.5 Gray Code
8.2.6 Alphanumeric Codes

8.3 Hamming Distance
8.4 Encoding a Message
8.5 Groups Codes

8.5.1 Procedure for Generating Group Codes
8.6 Error-Detecting Codes

8.6.1 Error-Correcting Codes
8.7 Answers to Check Your Progress Questions
8.8 Summary
8.9 Key Words

8.10 Self Assessment Questions and Exercises
8.11 Further Readings

BLOCK - III MATRIX OF A GRAPH AND CHROMATIC NUMBERS

UNIT 9 GRAPH THEORY 139-156
9.0 Introduction
9.1 Objectives
9.2 Definition of a Graph

9.2.1 Directed and Undirected Graphs
9.3 Finite and Infinite Graphs
9.4 Incidence, Degree and Pendent Vertices Isomorphism
9.5 Sub Graphs
9.6 Walk, Paths and Circuits
9.7 Connected and Disconnected Graphs
9.8 Answers to Check Your Progress Questions
9.9 Summary

9.10 Key Words
9.11 Self Assessment Questions and Exercises
9.12 Further Readings

UNIT 10 CIRCUIT MATRIX 157-178
10.0 Introduction
10.1 Objectives
10.2 Matrix Representation of A Graph
10.3 Incidence Matrix
10.4 Circuit Matrix
10.5 Fundamental Circuit Matrix and rank of the Circuit Matrix
10.6 Cut Set Matrix
10.7 Adjacency Matrix

10.7.1 Adjacency Matrix
10.7.2 Path Matrix

10.8 Answers to Check Your Progress Questions
10.9 Summary

10.10 Key Words
10.11 Self Assessment Questions and Exercises
10.12 Further Readings

UNIT 11 CHROMATIC NUMBERS 179-193
11.0 Introduction
11.1 Objectives
11.2 Chromatic Numbers
11.3 Chromatic Partitioning
11.4 Chromatic Polynomial

11.4.1 Properties of the Chromatic Polynomial
11.4.2 Algorithms for the Chromatic Polynomial

11.5 Answers to Check Your Progress Questions
11.6 Summary
11.7 Key Words
11.8 Self Assessment Questions and Exercises
11.9 Further Readings

BLOCK - IV TREES AND CUT SETS

UNIT 12 TREES 194-209
12.0 Introduction
12.1 Objectives
12.2 Trees

12.2.1 Properties of Trees
12.3 Pendent Vertices in a Trees
12.4 Distance and Centers in a Trees
12.5 Rooted and Binary Trees
12.6 Answers to Check Your Progress Questions
12.7 Summary
12.8 Key Words
12.9 Self Assessment Questions and Exercises

12.10 Further Readings

UNIT 13 SPANNING TREES 210-218
13.0 Introduction
13.1 Objectives
13.2 Spanning Trees
13.3 Fundamental Circuits
13.4 Finding all Spanning Trees of a graph
13.5 Spanning Trees in a Weighted Graph
13.6 Answers to Check Your Progress Questions
13.7 Summary
13.8 Key Words
13.9 Self Assessment Questions and Exercises

13.10 Further Readings

UNIT 14 CUT SETS AND CONNECTIVITY OF GRAPHS 219-242
14.0 Introduction
14.1 Objectives
14.2 Cut Set
14.3 Properties of a Cut Sets
14.4 All Cut Set in a Graph
14.5 Fundamental Circuits and Cut Set

14.5.1 Fundamental Cut Sets
14.6 Connectivity and Separability
14.7 Euler Graph

14.7.1 Eulerian Digraphs
14.8 Hamiltonian Circuits and Paths
14.9 Answers to Check Your Progress Questions

14.10 Summary
14.11 Key Words
14.12 Self Assessment Questions and Exercises
14.13 Further Readings

Introduction

NOTES

Self-Instructional
10 Material

INTRODUCTION
Mathematics includes the study of such topics as quantity (number theory), structure
(algebra), space (geometry), and change (mathematical analysis). It has no generally
accepted definition. Mathematicians search for and use patterns to formulate new
conjectures; they resolve the truth or falsity of such by mathematical proof. When
mathematical structures are good models of real phenomena, mathematical
reasoning can be used to provide insight or predictions about nature. Mathematics
has no generally accepted definition. Aristotle defined mathematics as “The Science
of Quantity” and this definition prevailed until the 18th century. A great many
professional mathematicians take no interest in a definition of mathematics, or
consider it undefinable.

Discrete mathematics is the study of mathematical structures that are
fundamentally discrete rather than continuous. In contrast to real numbers that
have the property of varying smoothly, the objects studied in discrete mathematics,
such as integers, graphs, and statements in logic, do not vary smoothly but have
distinct and separated values. Discrete mathematics, therefore, excludes topics in
continuous mathematics, such as calculus or Euclidean geometry. Discrete objects
can often be enumerated by integers. More formally, discrete mathematics has
been characterized as the branch of mathematics dealing with countable sets, i.e.,
finite sets or sets with the same cardinality as the natural numbers. However, there
is no exact definition of the term ‘Discrete Mathematics’. Indeed, discrete
mathematics is described less by what is included than by what is excluded:
continuously varying quantities and related notions.

Principally, the discrete mathematics includes the fundamental concepts of
sets, relations and functions, mathematical logic, group theory, counting theory,
probability, mathematical induction, and recurrence relations, graph theory, trees
and Boolean algebra.

This book, Discrete Mathematics, is divided into four blocks, which are
further subdivided into fourteen units. The topics discussed include logic, tautology
and theory of inference, normal forms – principal normal forms, quantifiers, relations,
equivalence relation, lattices, new lattices, modular and distributive lattices, Boolean
algebra, Boolean polynomials, coding theory, graph, finite and infinite graphs,
incidence, degree, isolated and pendent vertices, sub graphs, walks, paths and
circuits, connected and disconnected graphs, matrix representation of a graph,
incidence matrix, circuit matrix, fundamental circuit matrix, cut set matrix, adjacency
matrix, chromatic number, chromatic partitioning, trees, properties of trees,
distances and centres in a tree, rooted and binary trees, spanning trees, fundamental
circuits, cut sets, cut sets in a graph, Eulerian and Hamiltonian graphs.

The book follows the self-instructional mode wherein each unit begins with
an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before going on
to the presentation of the detailed content in a simple and structured format. ‘Check
Your Progress’ questions are provided at regular intervals to test the student’s
understanding of the subject. ‘Answers to Check Your Progress Questions’, a
‘Summary’, a list of ‘Key Words’, and a set of ‘Self-Assessment Questions and
Exercises’ are provided at the end of each unit for effective recapitulation.

NOTES

Self-Instructional
Material 1

Mathematical Logic
BLOCK - I

LOGIC, TAUTOLOGY AND
THEORY OF INFERENCE

UNIT 1 MATHEMATICAL LOGIC

Structure
1.0 Introduction
1.1 Objectives
1.2 Mathematical Logic: An Introduction

1.2.1 Atomic and Compound Statements
1.3 Connectives

1.3.1 Conjunction
1.3.2 Disjunction
1.3.3 Negation

1.4 Logical Operators
1.5 Truth Table
1.6 Answers to Check Your Progress Questions
1.7 Summary
1.8 Key Words
1.9 Self Assessment Questions and Exercises

1.10 Further Readings

1.0 INTRODUCTION

Every mathematical statement must be precise. Therefore, there has to be proper
reasoning in every mathematical proof. Proper reasoning involves logic. Definitions
of logic is that, it is the analysis of methods of reasoning. The study of logic helps
in increasing one's ability of systematic and logical reasoning. It also helps to develop
the skills of understanding various statements and their validity. Logic has a wide
scale application in circuit designing, computer programming etc. Hence, the study
of logic becomes essential. Mathematical logic is a sub-field of mathematics which
deals with the applications of formal logic to mathematics. Mathematical logic has
several meanings in common usage. It originally referred to symbolic or formal
logic, and then came to be associated with the study of the logical (and even
philosophical) foundations of mathematics. In contemporary use by mathematical
logicians, the term refers to several branches of pure mathematics whose study
involves careful attention to formal axiom systems and formal definability. Its principal
aim is to be a precise and adequate understanding of the notion of mathematical
proof. Basic Mathematical logics are a negation, conjunction, and disjunction.
The symbolic form of mathematical logic is, '~' for negation '̂ ' for conjunction and
' ' for disjunction.

Mathematical Logic

NOTES

Self-Instructional
2 Material

In logic, a logical connective (also called a logical operator, sentential
connective, or sentential operator) is a symbol or word used to connect two or
more sentences (of either a formal or a natural language) in a grammatically valid
way, such that the value of the compound sentence produced depends only on
that of the original sentences and on the meaning of the connective.

The most common logical connectives are binary connectives (also called
dyadic connectives), which join two sentences and which can be thought of as the
function's operands. Another common logical connective, negation, is considered
to be a unary connective.

A truth table is a mathematical table used in logic-specifically in connection
with Boolean algebra, Boolean functions, and propositional calculus-which sets
out the functional values of logical expressions on each of their functional arguments,
that is, for each combination of values taken by their logical variables. In particular,
truth tables can be used to show whether a propositional expression is true for all
legitimate input values, i.e., logically valid.

In this unit, you will study about the logic introduction, connectives, atomic
statements, compound statement, truth table, and related problems.

1.1 OBJECTIVES

After going through this unit, you will be able to:
Explain the mathematical logic
Understand the connectives
Analyse the atomic and compound statements
Interpret the truth table

1.2 MATHEMATICAL LOGIC: AN INTRODUCTION

One of the main aims of mathematical logic is to provide rules. The rules of logic
give precise meaning to mathematical statements and distinguish between valid
and invalid mathematical arguments. In addition, logic has numerous applications
in computer science. These rules are used in the design of computer circuits,
construction of computer programs, verification of the correctness of programs,
and in many other ways.
Propositions: A proposition is a statement to which only one of the terms, true
or false, can be meaningfully applied.
The value of a proposition if true is denoted by 1and false if denoted by 0.
Occasionally they are also denoted by the symbols T and F.
The following are propositions:

(i) 4 + 2 = 6

NOTES

Self-Instructional
Material 3

Mathematical Logic(ii) 4 is an even integer and 5 is not.
(iii) 5 is a prime number.
(iv) New Delhi is the capital of India.
(v) 2 { 1, 3, 5, 7}
(vi) 42 51
(vii) Paris is in England.

Of the above propositions, (i)–(iv) are true whereas (v)–(vii) are false.
The following are not propositions:

(i) Where are you going?
(ii) x + 2 = 5
(iii) x + y < z
(iv) Beware of dogs.

The expressions (i) and (iv) are not propositions since neither this True nor
False. The expressions (ii) and (iii) are not propositions, since the variables in
these expressions have not been assigned values and hence they are neither true
or false.
Note: Letters are used to denote propositions just as letters are used to denote
variables. The conventional letters used for this purpose are p, q, r, s, …

1.2.1 Atomic and Compound Statements

In logic and analytic mathematics, an atomic sentence is a type of declarative
sentence which is either ‘True’ or ‘False’ (may also be referred to as a proposition,
statement or truth bearer) and which cannot be broken down into other simpler
sentences. For example, the sentence ‘The dog ran’ is an atomic sentence in natural
language, whereas the sentence ‘The dog ran and the cat hid’ is a molecular sentence
in natural language.

For a logical analysis, the truth or falsity of sentences in general is determined
by only two things: the logical form of the sentence and the truth or falsity of its
simple sentences.

For example, the truth of the sentence ‘John is Greek and John is happy’ is
a function of the meaning of ‘and’, and the truth values of the atomic sentences
‘John is Greek’ and ‘John is happy’.

In a formal language, a Well-Formed Formula (or WFF) is a string of
symbols constituted in accordance with the rules of syntax of the language. A term
is a variable, an individual constant or an n-place function letter followed by n
terms. An atomic formula is a WFF consisting of either a sentential letter or an n-
place predicate letter followed by n terms. A sentence is a WFF in which any
variables are bound. An atomic sentence is an atomic formula containing no
variables.

Mathematical Logic

NOTES

Self-Instructional
4 Material

Principally, an atomic sentence contains no logical connectives, variables or
quantifiers. A sentence consisting of one or more sentences and a logical connective
is a compound (or molecular) sentence.

Assumptions

Consider the following examples:
Let F, G, H be predicate letters;
Let a, b, c be individual constants;
Let x, y, z be variables.

Atomic Sentences: The above mentioned WFFs are atomic sentences because
they contain no variables or conjunctions:
Atomic Formulae: The below mentioned WFFs are atomic formulae, but are
not sentences (atomic or otherwise) because they include free variables:

F(x)
G(a, z)
H(x, y, z)

Compound Sentences: The below mentioned WFFs are compound sentences.
They are sentences, but are not atomic sentences because they are not atomic
formulae:

x (F(x))
z (G(a, z))
x y z (H(x, y, x))
x z (F(x) G(a, z))
x y z (G(a, z) H(x, y, z))

Compound Formulae: The below mentioned WFFs are compound formulae.
They are not atomic formulae but are built up from atomic formulae using logical
connectives. They are also not sentences because they contain free variables:

F(x) G(a, z)
G(a, z) H(x, y, z)

Therefore, an atomic statement is a declarative statement without logical
connectives that has a truth value. A logical connective is a word or symbol that
joins two atomic statements to form a larger logical statement. Here are two
declarative statements that are atomic statements:

P = It is snowing.
Q = I am cold.

The truth value of a statement is whether the statement is ‘True’ or ‘False’. It can
be determined with the help of the truth table that when a logical statement is true
and when it is false. The truth table organizes all the possible cases.

NOTES

Self-Instructional
Material 5

Mathematical LogicConsider the atomic statement P joined with the atomic statement Q. The
following sentence can be written using the symbol ‘ ’ for the logical connective
‘OR’.

It is snowing or I am cold.
 P Q
This statement implies that one or both of the atomic statements is happening.

You have to check the validity of the statement, because it is important to remember
that not all statements are always ‘True’. To determine that the above statement is
true, construct a truth table. A truth table considers all possible combinations of
the original atomic statements being ‘True’ or ‘False’, and then uses logic to deduce
the truth value of the compound statement in each case. Following is the truth table
for ‘Or ()’.

Truth Table for OR

P Q P Q

T T T

T F T

F T T

F F F

There are four possible truth combinations of P and Q - Both True, First
True/Second False, First False/Second True, Both False. Only one of these
combinations yields a false statement for P Q.

This means that the statement ‘It is snowing or I am cold’ is only False if ‘It
is snowing’ is False and ‘I am cold’ is False. If ‘It is snowing’ is considered ‘True’
and ‘I am cold’ is also considered ‘True’, then the statement ‘It is snowing or I am
cold’ is also True. In mathematical logic, the word ‘OR’ does not mean exactly
one or the other rather it means ‘one or the other or both’.

1.3 CONNECTIVES

There are several ways in which we commonly combine simple statements into
compound ones. The words OR, AND, NOT, if… then and if and only if, can be
added to one or more propositions to create a new proposition. New propositions
are called compound propositions. Logical operators are used to form new
propositions or compound propositions. These logical operators are also called
connectives.

1.3.1 Conjunction
Conjunction (AND): If p and q are propositions, then the propositions ‘p and
q’, denoted by p q, is true when both p and q are true and is false otherwise.

Mathematical Logic

NOTES

Self-Instructional
6 Material

The proposition p q is called the conjunction of p and q.
The truth table for p q is shown in Table 1.1. Note that there are four rows in
this truth table, one row for each possible combination of truth values of the
propositions p and q.

Table 1.1 Truth Table for Conjunction

p q p q
0 0 0
0 1 0
1 0 0
1 1 1

Example 1.1: Find the conjunction of the propositions p and q where p is the
proposition ‘Today is Sunday’ and q is the proposition ‘It is raining today’.
Solution: The conjunction of these two propositions is p q the proposition,
‘Today is Sunday and it is raining today’.
Example 1.2: Let p be ‘Ravi is rich’ and let q be ‘Ravi is happy’. Write each of
the following in symbolic form:

(i) Ravi is poor but happy.
(ii) Ravi is neither rich nor happy.
(iii) Ravi is rich and unhappy.

Solution: The symbolic form of the above statements are as follows:
(i) ~ p q
(ii) ~ p ~ q
(iii) p ~ q

1.3.2 Disjunction
Disjunction (OR): If p and q are propositions, then disjunction p or q, denoted
as p q, is false when p and q are both false and true otherwise. The proposition
p q is called the disjunction of p and q.

Note that connectives ~ and defined earlier have the same meaning as
the words ‘NOT’ and ‘AND’ in general. However, the connective is not always
the same as the word ‘OR’ because of the fact that the word ‘OR’ in English is
commonly used both as an ‘exclusive Or’ and as an ‘inclusive Or’. For example,
consider the following statements:

(i) I shall watch the movie on TV or go to cinema.
(ii) There is something wrong with the fan or with the switch.
(iii) Ten or twenty people were killed in the fire today.

In statement (i), the connective ‘OR’ is used in the exclusive sense; that is
to say, one or the other possibility exists but not both. In statement (ii) the intended

NOTES

Self-Instructional
Material 7

Mathematical Logicmeaning is clearly one or the other or both. The connective ‘OR’ used in statement
(ii) is the ‘inclusive Or’. In statement (iii) the ‘OR’ is used for indicating an
approximate numbr of peoples, and it is not used as a connective. From the definition
of disjunction it is clear that is ‘inclusive Or’.

Table 1.2 Truth Table for Disjunction

p q p q

0

0

1

1

0

1

0

1

0

1

1

1

Example 1.3: Find the disjunction of the propositions p and q where p is the
proposition ‘Today is Sunday’ and q is the proposition ‘It is raining today’.
Solution: The disjunction of p or q, p q, is the proposition ‘Today is Sunday or
it is raining today’.

Example 1.4: Let p be ‘Ravi is tall’ and let q be ‘Ravi is handsome’. Write each
of the following statements in symbolic form:

(i) Ravi is short or not handsome.
(ii) Ravi is tall or handsome.
(iii) It is not true that Ravi is short or not handsome.

Solution: The symbolic form of the above statements are as follows:
(i) ~ p ~ q
(ii) p q
(iii) ~ (~ p ~ q)

Example 1.5: Let p be ‘Ravi speaks Tamil’ and let q be ‘Ravi speaks Hindi’.
Give a simple verbal sentence which describes each of the following.

(i) p q (ii) p q (iii) p ~ q (iv) ~ p ~ q (v) ~ (~ p).
Solution: The verbal statement of the above propositions are as follows:

(i) Ravi speaks Tamil or Hindi.
(ii) Ravi speaks Tamil and Hindi.
(iii) Ravi speaks Tamil but not Hindi.
(iv) Ravi does not speak Tamil or he does not speak Hindi.
(v) It is not true that Ravi does not speak Tamil.

1.3.3 Negation
Negation (NOT): If p is a proposition, its negation not p is another proposition
called the negation p. The negation of p is denoted by ~ p. The proposition ~ p is
read ‘not p’.
Alternate symbols used in the literature are p, p and ‘not p’.

Mathematical Logic

NOTES

Self-Instructional
8 Material

Note that a negation is called a connective although it only modifies a
statement. In this sense, negation is the only operator that acts on a single proposition.

Table 1.3 Truth Table for Negation

p ~p
0 1
1 0

Example 1.6: Find the negation of the propositions:
(i) It is cold.
(ii) Today is Sunday.
(iii) Ravi is poor.

Solution: The negation of the propositions are:
(i) It is not cold.
(ii) Today is not Sunday.
(iii) Ravi is not poor.

1.4 LOGICAL OPERATORS

Conditional Operator (If … Then): Let p and q be propositions. The implication
p q is false when p is true and q is false and true otherwise. In the implication,
p is called the premise or hypothesis and q is called the consequence or conclusion.

Table 1.4 Truth Table for If…. Then

p q p q
0
0
1
1

0
1
0
1

1
1
0
1

Because implications arise in many places in mathematical argument, a wide variety
of terminology is used to express p q. Some of the more common ways of
expressing this implication are:

(i) p implies q.
(ii) if p, then q.
(iii) q if p.
(iv) p only if q.
(v) p is sufficient for q.
(vi) q whenever p.
(vii) q is necessary for p.

We shall avoid the word ‘implies’ since it might be used in different contexts.

NOTES

Self-Instructional
Material 9

Mathematical LogicExample 1.7: Let p denote ‘It is below freezing’ and let q denote ‘It is snowing’.
Write the following statements in a symbolic form:

(i) If it is below freezing, it is also snowing.
(ii) It is not snowing if it is below freezing.
(iii) It is below freezing is a necessary condition for it to be snowing.

Solution: Recall that p q can be read ‘if p, then q’ or ‘p only if q’ or ‘q is
necessary for p’. Then (i) p q (ii) p ~ q (iii) q p

Example 1.8: Let p and q be the propositions, where:
p : You drive over 80 kms per hour.
q : You get a speeding ticket.
Write the following propositions in symbolic form:
(i) You will get a speeding ticket if you drive over 80 kms per hour.
(ii) If you do not drive over 80 kms per hour, then you will not get a speeding

ticket.
(iii) Driving over 80 kms per hour is sufficient for getting a speeding ticket.
(iv) Whenever you get a speeding ticket, you are driving over 80 kms per

hour.

Solution: (i) p q (ii) ~ p ~ q (iii) p q (iv) q p
Example 1.9: Write each of the following statements in the form ‘if p then q’:

(i) To get tenure as a professor, it is sufficient to be world-famous.
(ii) It shows whenever the wind blows from the north-east.
(iii) The apple trees will bloom if it stays warm for a week.

Solution: The p and q form of the above statements are as follows:
(i) If you are world-famous, then you will get tenure as a professor.
(ii) If the wind blows from the north-east, then it snows.
(iii) If it stays warm for a week, then the apple trees will bloom.

Example 1.10: Determine the truth value of each of the following statements:
(i) If Calcutta is in India, then 1 + 1 = 2.
(ii) If Calcutta is in Sri Lanka, then 1 + 1 = 2.
(iii) If Calcutta is in India, then 1 + 1 = 3.
(iv) If Calcutta is in Sri Lanka, then 1 + 1 = 3.

Solution: Since the statement ‘if p then q’ is false only when p is true and q is
false. only statement (iii) is false.
Biconditional Operator (If and Only If): Let p and q be propositions. The
biconditional p q is true when p and q have the same truth values and is false
otherwise.
Note that the biconditional p q is true when both the implications p q and q

p are true. So ‘p if and only if q’ is used for biconditional. Other common ways
of expressing the proposition p q or p = q are ‘p is necessary and sufficient for
q’ and ‘if p then q, and conversely’.

Mathematical Logic

NOTES

Self-Instructional
10 Material

Table 1.5 Truth Table for If and Only If

p q p q
0
0
1
1

0
1
0
1

1
0
0
1

Each of the following theorems is well known, and each can be symbolized in
the form p q:

(i) Two lines are parallel if and only if they have the same slope.
(ii) Two triangles are congruent if and only if all three sets of corresponding

sides are congruent.

Example 1.11: Determine the truth value of each of the following statements:
(i) Calcutta is in India if and only if 1 + 1 = 2.
(ii) Calcutta is in Sri Lanka if and only if 1 + 1 = 2.
(iii) Calcutta is in India if and only if 1 + 1 = 3.
(iv) Calcutta is in Sri Lanka if and only if 1 + 1 = 3.

Solution: Statements (i) and (iv) are true since the substatements are both true in
statement (i) and both false in statement (iv). On the other hand, statements (ii)
and (iii) are false since the substatements have different truth values.
Example 1.12: Let p denote ‘He is poor’ and let q denote ‘He is happy’. Write
each of the following statement in symbolic form using p and q:

(i) To be poor is to be unhappy.
(ii) He is rich if and only if he is unhappy.
(iii) Being rich is a necessary and sufficient condition to being happy.

Solution: The symbolic form using p and q of the above statements are as follows:
(i) p q
(ii) ~ p q
(iii) ~ p q

1.5 TRUTH TABLE

The truth table of a logical operator specifies how the truth value of a proposition
using that operator is determined by the truth values of the propositions. A truth
table lists all possible combination of truth values of the propositions in the left
most columns and the truth value of the resulting propositions in the right most
column.

Our basic concern is to determine the truth table of a proposition for each
possible combination of the truth values of the compound propositions. A table
showing all such truth values is called truth table of the formula. In general, if there

NOTES

Self-Instructional
Material 11

Mathematical Logicare n distinct components in a proposition or formula, we need to consider 2n

possible combinations of truth values in order to obtain the truth table.

Two methods of constructing truth table are shown in the following examples.
Example 1.13: Construct the truth table for the statement formula ~ p q.
Solution: It is necessary to consider all possible values of p and q (for the variables,
as here, four rows are necessary). These values are entered in two first two columns
of table for both methods.
Method 1: In this method, the truth values of ~ p are entered in the third column,
and the truth values of ~ p q are entered in the fourth column.

Truth Table (Method 1)

p q ~ p ~ p q

0

0

1

1

0

1

0

1

1

1

0

0

0

1

0

0

Truth Table (Method 2)
p q p ~ q
0
0
1
1

0
1
0
1

0
0
1
1

1
1
0
0

0
1
0
0

0
1
0
1

Step
number 1 2 3 1

Method 2: In this method, a column is drawn for each statement as well as for the
connectives that appear. The truth values are entered step by step. The step numbers
at the bottom of the table shows the sequence followed in arriving at the final step.
Example 1.14: Construct the truth table for p ~ p.
Solution: The truth table can be constructed as follows:

Truth Table (Method 1)

p ~ p p ~ p

0

1

1

0

0

0

Truth Table (Method 2)

p p ~ p

0

1

0

1

0

0

1

0

0

1

Step
number 1 3 2 1

Mathematical Logic

NOTES

Self-Instructional
12 Material

Example 1.15: Construct the truth table for (p q) ~ p.
Solution: The following is the truth table:

Truth Table (Method 1)

p q p q ~ p (p q) ~p

0

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

1

1

1

1

Truth Table (Method 2)

p q p q ~ p

0

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

1

1

Step number 1 2 1 3 2 1

Example 1.16: Construct the truth tables for:
(i) ~ (p q) (ii) p (~ q) (iii) (p q) r

(iv) (p q) (q r) (r p) (v) (~ p) (~ q) (vi) (p q) r
s

Solution: The truth table for the above propositions are constructed below:
(i) ~ (p q) (ii) p (~ q)

Truth Table Truth Table

p q p q ~ (p q)
0
0
1
1

0
1
0
1

0
0
0
1

1
1
1
0

p q ~ q p (~ q)
0
0
1
1

0
1
0
1

1
0
1
0

0
0
1
0

(iii) (p q) r

Truth Table

p q r p q (p q) r
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
1

NOTES

Self-Instructional
Material 13

Mathematical Logic(iv) (p q) (q r) (r p)

Truth Table

p q r p q q r r p (p q) (q r) (p q) (q r) (r p)
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
1
0
0
0
1

0
0
0
0
0
1
0
1

0
0
0
1
0
0
1
1

0
0
0
1
0
1
1
1

(v) (~ p) (~ q)

Truth Table

p q ~ p ~ q (~ p) (~ q)
0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0

1
1
1
0

(vi) (p q) r s

Truth Table

p q r s p q p q r p q r s
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Example 1.17: Construct the truth tables for:
(i) ~ (~ p ~ q) (ii) ~ (~ p ~ q)

(iii) p (p q) (iv) p (q p)

Mathematical Logic

NOTES

Self-Instructional
14 Material

Solution: The truth tables are constructed as follows:

(i) ~ (~ p ~ q)

Truth Table

p q ~ p ~ q (~ p ~ q) ~ (~ p ~ q)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

1

1

0

0

0

0

1

(ii) ~ (~ p ~ q)

Truth Table

p q ~ p ~ q (~ p ~ q) ~ (~ p ~ q)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

0

0

0

0

1

1

1

(iii) p (p q)

Truth Table

p q p q p (p q)

0

0

1

1

0

1

0

1

0

1

1

1

0

0

1

1

(iv) p (q p)

Truth Table

p q q p p (q p)

0

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

Example 1.18: Construct the truth tables for:
(i) (p q) (p q)
(ii) ~ p (q p)
(iii) (p q) (p q)
(iv) p (q r)

NOTES

Self-Instructional
Material 15

Mathematical LogicSolution: The truth tables are constructed as follows:

(i) (p q) (p q)

Truth Table

p q p q p q (p q) (p q)

0

0

1

1

0

1

0

1

1

1

0

1

0

0

0

1

0

0

1

1

(ii) ~ p (q p)
Truth Table

p q ~ p q p ~ p (q p)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

1

1

0

1

1

(iii) (p q) (p q)
Truth Table

p q p q p q (p q) (p q)

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

1

1

1

1

(iv) p (q r)

Truth Table

p q r q r p (q r)

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

1

1

1

1

1

0

0

0

1

Mathematical Logic

NOTES

Self-Instructional
16 Material

Check Your Progress

1. Why mathematical logic is used?
2. What is a proposition?
3. Explain the atomic and compound statements.
4. Why logical operators are used?
5. Define conjunction.
6. What is disjunction?
7. Give the definition of negation.
8. What is truth table of a logical operator?

1.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. One of the main aims of mathematical logic is to provide rules. The rules of
logic give precise meaning to mathematical statements and distinguish
between valid and invalid mathematical arguments. In addition, logic has
numerous applications in computer science. These rules are used in the
design of computer circuits, construction of computer programs, verification
of the correctness of programs, and in many other ways.

2. Propositions: A proposition is a statement to which only one of the terms,
true or false, can be meaningfully applied.
The value of a proposition if true is denoted by 1and false if denoted by 0.
Occasionally they are also denoted by the symbols T and F.

3. Principally, an atomic sentence contains no logical connectives, variables or
quantifiers. A sentence consisting of one or more sentences and a logical
connective is a compound (or molecular) sentence.

4. Logical operators are used to form new propositions or compound
propositions. These logical operators are also called connectives.

5. Conjunction (AND): If p and q are propositions, then the propositions ‘p
and q’, denoted by p q, is true when both p and q are true and is false
otherwise. The proposition p q is called the conjunction of p and q.

6. Disjunction (OR): If p and q are propositions, then disjunction p or q, denoted
as p q, is false when p and q are both false and true otherwise. The
proposition p q is called the disjunction of p and q.

7. Negation (NOT): If p is a proposition, its negation not p is another proposition
called the negation p. The negation of p is denoted by ~ p. The proposition
~ p is read ‘not p’.

NOTES

Self-Instructional
Material 17

Mathematical Logic8. The truth table of a logical operator specifies how the truth value of a
proposition using that operator is determined by the truth values of the
propositions. A truth table lists all possible combination of truth values of
the propositions in the left most columns and the truth value of the resulting
propositions in the right most column.

1.7 SUMMARY

One of the main aims of mathematical logic is to provide rules. The rules of
logic give precise meaning to mathematical statements and distinguish
between valid and invalid mathematical arguments. In addition, logic has
numerous applications in computer science. These rules are used in the
design of computer circuits, construction of computer programs, verification
of the correctness of programs, and in many other ways.
Propositions: A proposition is a statement to which only one of the terms,
true or false, can be meaningfully applied.
The value of a proposition if true is denoted by 1and false if denoted by 0.
Occasionally they are also denoted by the symbols T and F.
Principally, an atomic sentence contains no logical connectives, variables or
quantifiers. A sentence consisting of one or more sentences and a logical
connective is a compound (or molecular) sentence.
Logical operators are used to form new propositions or compound
propositions. These logical operators are also called connectives.
Conjunction (AND): If p and q are propositions, then the propositions ‘p
and q’, denoted by p q, is true when both p and q are true and is false
otherwise. The proposition p q is called the conjunction of p and q.
Disjunction (OR): If p and q are propositions, then disjunction p or q, denoted
as p q, is false when p and q are both false and true otherwise. The
proposition p q is called the disjunction of p and q.
Negation (NOT): If p is a proposition, its negation not p is another proposition
called the negation p. The negation of p is denoted by ~ p. The proposition
~ p is read ‘not p’.
The truth table of a logical operator specifies how the truth value of a
proposition using that operator is determined by the truth values of the
propositions. A truth table lists all possible combination of truth values of
the propositions in the left most columns and the truth value of the resulting
propositions in the right most column.

Mathematical Logic

NOTES

Self-Instructional
18 Material

1.8 KEY WORDS

Proposition: A proposition is a statement to which only one of the terms,
true or false, can be meaningfully applied.
Atomic and compound statement: Principally, an atomic sentence
contains no logical connectives, variables or quantifiers. A sentence consisting
of one or more sentences and a logical connectives is a compound (or
molecular) sentence.
Connectives: The words which combine simple statements to form a
compound statement are called connectives.
Conjunction (AND): If p and q are propositions, then the proposition ‘p
and q’, denoted by p q, is true when both p and q are true and false
otherwise. The proposition p ̂ q is called the conjunction of p and q.
Disjunction (OR): If p and q are propositions, then disjunction p or q,
denoted as p q, is false when p and q are both false and true otherwise.
The proposition p q is called the disjunction of p and q.
Negation (NOT): if p is a proposition, its negation, not p is another
proposition called the negation p. The negation of p is denoted by p and
read as ‘not p’.
Truth table: The truth table of a logical operator specifies how the truth
value of a proposition using that operator is determined by the truth values
of the proposition.

1.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the significances of mathematical logic.
2. Explain the term propositions.
3. Define the conjunction.
4. Elaborate on the disjunction.
5. What do you understand by the negation?
6. Interpret the atomic and compound statements.
7. Analyse the truth table for a logical operator.

Long-Answer Questions

1. Discuss briefly the significances and applications of mathematical logic giving
appropriate examples.

NOTES

Self-Instructional
Material 19

Mathematical Logic2. Explain about the propositions and logical operators with the help of suitable
examples.

3. Briefly discuss about the logical connectives giving example of each type.
4. Elaborate on the significance of statements and notations in mathematical

logic giving appropriate examples.
5. Explain the significance of truth tables in mathematical logic.
6. Describe briefly the atomic and compound statements.
7. Construct the truth table for the statement formula ~ p q.
8. Construct the truth table for p ~ p.
9. Construct the truth table for (p q) ~ p.

1.10 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

Tautology

NOTES

Self-Instructional
20 Material

UNIT 2 TAUTOLOGY

Structure
2.0 Introduction
2.1 Objectives
2.2 Tautology
2.3 Tautological Implications and Equivalence of Formulae

2.3.1 Equivalence and Implication
2.4 Replacement Process
2.5 Law of Duality
2.6 Answers to Check Your Progress Questions
2.7 Summary
2.8 Key Words
2.9 Self Assessment Questions and Exercises

2.10 Further Readings

2.0 INTRODUCTION

In Mathematical logic, a tautology is a formula or assertion that is true in every
possible interpretation. An example is “x = y or x y”. A less abstract example is
“either the ball is green, or the ball is not green”. This would be true regardless of
the colour of the ball.

Tautologies are a key concept in propositional logic, where a tautology is
defined as a propositional formula that is true under any possible Boolean valuation
of its propositional variables. A key property of tautologies in propositional logic is
that an effective method exists for testing whether a given formula is always satisfied
(equiv., whether its negation is unsatisfiable).

The definition of tautology can be extended to sentences in predicate logic,
which may contain quantifiers—a feature absent from sentences of propositional
logic. Indeed, in propositional logic, there is no distinction between a tautology
and a logically valid formula. In the context of predicate logic, many authors define
a tautology to be a sentence that can be obtained by taking a tautology of
propositional logic, and uniformly replacing each propositional variable by a first-
order formula (one formula per propositional variable). The set of such formulas is
a proper subset of the set of logically valid sentences of predicate logic (i.e.,
sentences that are true in every model).

The philosopher Ludwig Wittgenstein first applied the term to redundancies
of propositional logic in 1921, borrowing from rhetoric, where a tautology is a
repetitive statement. In logic, a formula is satisfiable if it is true under at least one
interpretation, and thus a tautology is a formula whose negation is unsatisfiable.
Unsatisfiable statements, both through negation and affirmation, are known formally
as contradictions.

NOTES

Self-Instructional
Material 21

TautologyIn logic, a rule of replacement is a transformation rule that may be applied to
only a particular segment of an expression. A logical system may be constructed
so that it uses either axioms, rules of inference, or both as transformation rules for
logical expressions in the system.

In this unit, you will study about the tautology, tautological implications and
equivalence of formulae, replacement process, and law of duality.

2.1 OBJECTIVES

After going through this unit, you will be able to:
Describe the concept of tautology
Explain the tautological implications and equivalence of formulae
Elaborate on the replacement process
Analyse the law of duality

2.2 TAUTOLOGY

The final column of a truth table of a given formula contains both 1 and 0. There
are some formulae whose truth values are always 1 or always 0 regardless of the
truth value assignments to the variables. Consider for example, the statement formula
p ~ p and p ~ p in Truth Table 2.1.

Truth Table 2.1 Tautology and Contradiction

p ~ p p ~ p p ~p

0

1

1

0

1

1

0

0

The truth values of p ~ p and p ~ p, which are 1 and 0, respectively,
are independent of the statement by which the variable p may be replaced.

Tautology: A statement formula which is true regardless of the truth values
of the statements which replace the variables in it is called a tautology or a logical
truth or a universally valid formula.

Contradiction: A statement formula which is false regardless of the truth
values of the statements which replace the variables in it is called a contradiction.

Contingency: A statement formula that is neither a tautology nor a
contradiction is called a contingency.
Note: A straight forward method to determine whether a given formula is a tautology is to
construct its truth table . We may say that a statement formula which is a tautology is
identically true (their truth tables consist of a column of ones) and a formula which is a
contradiction is identically false (their truth tables consist of a column of zeros). Obviously,
the negation of a contradiction is a tautology.

Tautology

NOTES

Self-Instructional
22 Material

Example 2.1: Verify if the following propositions are tautologies:
(i) (p q) p
(ii) q (p q)

(iii) (p q) (q p)
(iv) p ~ (p q)
(v) ~ (p q) (~ p) (~ q)

Construct the truth table of the above given propositions.
Solution: The truth table is constructed as follows:

Truth Table

p q ~ p ~ q p q p q q p ~ (p q) (a) (b) (c) (d) (e)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

1

1

1

0

0

0

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Since the truth value of all propositions is 1, for all values of p and q, the
given propositions are tautologies.
Example 2.2: Verify if the proposition (p q) ~ (p q) is a contradiction.
Solution: The proposition is verified as follows:

Truth Table

p q p q p q ~ (p q) (p q) ~ (p q)

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

1

0

0

0

0

0

0

0

Since the truth value of (p q) ~ (p q) is 0 for all values of p and q, the
proposition is a contradiction.
Example 2.3: Show that the conjunction of two tautologies is also a tautology.

Solution: Let us denote A and B by two statement formulae which are tautologies.
If we assign any truth values to the variables of A and B, then the truth values of
both A and B will be 1. Thus, the truth value of A B will be 1, so that A B will
be a tautology.

Example 2.4: From the formulae given below, indicate if they are tautologies or
contradictions.

(i) p (p q) (ii) (p ~ p) ~ p
(iii) (~ q p) q (iv) (p q) (~ p ~ q)

NOTES

Self-Instructional
Material 23

TautologySolution: the solution is obtained as follows:
Truth Table

p q ~ p ~ q p q ~ p ~ q p ~ p ~ q p (a) (b) (c) (d)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

0

0

0

0

1

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Since the truth values of statements (i) and (ii) are 1 for all values of p and
q, statements (i) and (ii) are tautologies. Since the truth values of statements (iii)
and (iv) are 0 for all values of p and q, statements (iii) and (iv) are contradictions.

Substitution instance: A formula A is called a substitution instance of
another formula B, if A can be obtained from B by substituting formulae for some
variables of B, with the condition that the same formula is substituted for the same
variables each time it occurs.
Note: Suppose A (p, q, ….) is a tautology. Then it does not depend upon the particular truth
values of its variables p,q,… so we can substitute P for p, Q for q… for any propositions P,
Q,… in the tautology A (p,q…) and still have a tautology A(P, Q,…).

Example 2.5: Verify that the proposition (p ~ q) ~ (p ~ q) is a
tautology.
Solution: This proposition has the form p ~ p where p = p ~ q. Since p ~
p is a tautology, by the above Note, (p ~ p) ~ (p ~ q) is also a tautology.
Note: It is possible to substitute more than one variable by other formulae provided all
substitutions are considered to occur simultaneously.

Example 2.6: Produce the substitution instance of the following formulae for the
given substitutions:

(i) (((p q) p) p); substitute (p q) for p and (p q r) for q.
(ii) ((p q) (q p); substitute q for p and (p ~ p) for q.

Solution: The solution is obtained as follows:
(i) Substitute (p q) for p and (p q r) for q simultaneously, we get

(((p q) (p q r) (p q) (p q))
(ii) Substitute q for p and (p ~ p) for q simultaneously in:

((p q) (q p)), we get (q (p ~ p)) ((p ~ p) q))
Note: In constructing substitution instances of a formula, substitutions are made for the
simple proposition (without connectives) and never for the compound proposition. For
example, p q is not a substitution instance of p ~ r, because it must be replaced by r and
not ~ r.

Example 2.7: Verify if the proposition ((p ~ q) r) s ~ (((p ~ q)
r) s) is a tautology..

Solution: This proposition has the form p ~ p where p = (((p ~ q) r) s)

Tautology

NOTES

Self-Instructional
24 Material

2.3 TAUTOLOGICAL IMPLICATIONS AND
EQUIVALENCE OF FORMULAE

A statement is said to be a tautology if it is true for all logical possibilities.
A statement is said to be a contradiction if it is false for all logical possibilities.
In the following example, suppose t is a tautology, c is a contradiction and p is any
proposition. Then,
According to Tautology Laws:

p t p
p t t

t c
According to Contradiction Laws:

p c c
p c p

c t
The following examples and the truth tables are discussed to verify these laws.
Example 2.8: Prove that the statement p ~ p is a tautology while p ~ p is a
contradiction.
Solution: If p is false, then ~p is true. So, p ~ p is true and p ~p is false. If p
is true, then ~p is false. So, p ~p is true and p ~p is false. These are the only
logical possibilities and in each case p ~p is true while p ~p is false. This
proves our assertion.
Example 2.9: Prove that (p q) (p q) is a tautology.
Solution: The following truth table shows that the compound statement, (p q)

 (p q) has truth value T for all logical possibilities and so, it is a tautology.
Since, p q = ~ p q

(p q) (p q)
= ~(p q) (p q)

Truth Table

p q p q ~ (p q) p q (p q) (p q)

= ~(p q) (p q)

T T T F T T
T F F T T T
F T F T T T
F F F T F T

Example 2.10: Prove that (p q) ~(p q) is a contradiction.
Solution: The following truth table shows that the compound statement,
(p q) ~(p q) has truth value F for all logical possibilities and so it is a
contradiction.

NOTES

Self-Instructional
Material 25

TautologyTruth Table

p q p q p q ~(p q) (p q) ~(p q)

T T T T F F
T F F T F F
F T F T F F
F F F F T F

Example 2.11: Prove that (p q) (q r) (p r) is a tautology. This is
also called Transitive Law.
Solution: We construct the truth table for the given compound statement to prove
the assertion.

Truth Table

p q r p q q r p r (p q) (q r) (p q) (q r)
(p r)

T T T T T T T T
T T F T F F F T
T F T F T T F T
T F F F T F F T
F T T T T T T T
F T F T F T F T
F F T T T T T T
F F F T T T T T

Example 2.12: If t denotes tautology and p is any statement, then show that,
(i) p t p
(ii) p t t

Solution: (i) When p is true, p t is also true (as t is always true) and when p is
false, p t is false. So, p and p t are equivalent statements.

(ii) When p is true, p t is also true and when p is false, p t is true. So, p
t is always true. Hence, p t and t are equivalent statements.

Example 2.13: If c denotes a contradiction and p be any statement, then show
that,

(i) p c p (ii) p c c
Solution: (i) If p is true, then p c is clearly true and if p is false, then p c is
false (as c is always false). So, p c and p are equivalent statements.

(ii) If p is true, then p c is false and again p is false implies that p c is false.
So, p c is a contradiction. Hence, p c and c are equivalent statements.

Biconditional Statement

Consider the statement,
‘If you work hard you will be successful.’ Suppose p stands for ‘You work

hard’ and q stands for ‘You will be successful.’ In symbols, the above statement
can be written as p q.

Tautology

NOTES

Self-Instructional
26 Material

Such statements are called Conditional Statements. Here q depends upon
p, but p need not depend upon q.

The compound statement p q is true in every case except, when p is true
and q is false.

If two conditional statements are combined such as p q and q P, then it
is known as biconditional statement, it is denoted as p q.

Example 2.14: Construct truth table for p q.

Solution: The truth table of p q will be:

Truth Table

p q p q

T T T
T F F
F T T

F F T

Example 2.15: Suppose p stands for ‘The triangle is isosceles’ and q stands for
‘Two sides of the triangle are of equal length’. Translate the following compound
statement into a symbolic form and give its equivalent statement, both in words
and symbols.

‘If the triangle is isosceles, then two sides of the triangle are of equal length.’
Solution: The above compound statement in symbolic form is ‘p q’.
We show that (p q) (~q) (~p). The following Truth Table proves our
assertion:

Truth Table

p q p q ~q ~p ~q ~p

T T T F F T
T F F T F F
F T T F T T

F F T T T T

So, the equivalent statement in words will be ‘If two sides of the triangle are
not of equal length, then the triangle is not isosceles.’
Example 2.16: Are the following statements equivalent?

‘If the traders do not reduce the prices, then the government will take action
against them.’

‘It is not true that the traders do not reduce the prices and government does
not take action against them.’

NOTES

Self-Instructional
Material 27

TautologySolution: Suppose p stands for ‘traders do not reduce the prices’ and q stands
for ‘government takes action against them.’

The first statement in symbolic form is p q and the second statement is
~(p ~q). We prove their equivalence by constructing the Truth Table:

Trtuh Table

p q ~q p ~q ~(p ~q) p q

T T F F T T
T F T T F F
F T F F T T

F F T F T T

Example 2.17: Construct the truth table for p q.

Solution: The following is the truth table for p q:
Truth Table

p q p q q p p q

T T T T T
T F F T F
F T T F F
F F T T T

Example 2.18: A firm of Chartered Accountants makes the following declaration:
An articled clerk from the firm passing the final C.A. examination in the first attempt
will be awarded a prize of Rs 100. Five clerks P, Q, R, S, U appeared in the
examination and only P, Q could pass. The firm awards prizes not only to them but
to R and S also. Is this action logically justified? U claims the prize comparing
himself with R and S but the firm refuses. Is this refusal logically justified? How
should the statement be worded so that only P and Q will be entitled for the prize.
Solution: Suppose p stands for ‘passing the examination in first attempt’ and q
stands for ‘getting a prize,’ then declaration of the firm is a conditional statement
p q as in given table. It is very clear from truth table of p q that relationship
p q is false only when p is true and q is false. In other words, if R and S get a
prize, the action is logically justified by looking at 3rd row of the truth table. Again,
U does not get a prize implies statement q is false for U. Since ‘U has not passed
the examination’ implies p is false for U, so, 4th row suggests that action is logically
justified. Also P and Q get a prize implies q is true for P and Q. Since P and Q
have passed the examination implies p is true for P and Q. So, first row suggests
that action, P, Q get a prize is logically justified.

Now, consider the truth table of p q. Since R, S, U fail in the examination
implies p is false for R, S, U. If they get a prize, then q is true for them. Third row
suggests that, it is not correct. If R, S, U do not get a prize, then q is false for them
and 4th row suggests that it is correct. So, truth table of p q shows that if a
person fails, he cannot get a prize. Finally, if P, Q get a prize then p, q are true for

Tautology

NOTES

Self-Instructional
28 Material

both P and Q and by first row, it is correct. If P, Q do not get a prize, then q is false
for P and Q and so by 2nd row, it is not true. So, the truth table of p q shows
that only P and Q can get a prize.

Hence, the statement should be ‘Those and only those persons who pass the
examination in first attempt will get a prize of Rs 100.’
Example 2.19: Are the following statements equivalent? Justify ‘it is not true that
Ashok will get a job if and only if he secures first division.’

‘Ashok will not get a job if and only if he secures first division.’
Solution: Suppose p stands for ‘Ashok gets a job’ and q stands for ‘Ashok
secures first division.’ The two statements in symbolic form will then be:

~(p q), ~p q
We prove their equivalence by constructing the Truth Table.

Truth Table

p q ~p ~p q p q ~(p q)
T T F F T F
T F F T F T
F T T T F T
F F T F T F

2.3.1 Equivalence and Implication

An important step used in mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that
produce propositions with the same truth value as a given compound proposition
are used extensively in the construction of mathematical arguments.
Equivalence
Two propositions are logically equivalent or simply equivalent if they have exactly
the same truth values under all circumstances.
We can also define this notion as follows,
The propositions p and q are called logically equivalent, if p q is tautology.
The equivalence of p and q is denoted by p q.
Notes: 1. One way to determine whether two propositions are equivalent is

to use a truth table. In particular, the propositions p and q are logically
equivalent, if and only if the columns giving their truth values agree.

Notes 2. Whenever we find logically equivalent statements, we can substitute
one for another as we wish, since this action will not change the
truth value of any statement.

Example 2.20: Show that ~ (p q) and ~ p ~ q are logically equivalent.
Solution: Construct the truth table of these propositions as shown below. Since

NOTES

Self-Instructional
Material 29

Tautologythe truth values are same for all combinations, it follows that these propositions
are logically equivalent.

Truth Table

p q ~ p ~ q p q ~ (p q) ~ p ~ q

0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 0

Example 2.21: Show that two propositions p q and ~ p ~ q are logically
equivalent.

Solution: Construct the required truth table. Since the truth values of p q
and ~ p q agree,

p q ~ p q

Truth Table

p q ~ p p q ~ p q

0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

Example 2.22: Show that p (q r) p (~ q r) (p q) r.
Solution: Refer Example 2.21 that q r ~ q r.

Replacing q r by ~ q r, we get
p (q r) p (~ q r)

~ p (~ q r) [by Example 2.21]
(~ p ~ q) r using Associativity of
~ (p q) r (by Example 2.20)
(p q) r [by Example 2.21]

Table given below contains some important equivalences. In these
equivalences, 1 denotes any proposition that is a tautology, and 0 denotes any
proposition that is a contradiction. The symbol p, q, r represent arbitrary
propositions. Most of the equivalences in this table have straight forward intuitive
interpretations and all of them can be verified by constructing truth tables.

Tautology

NOTES

Self-Instructional
30 Material

Table Logical Equivalences

Equivalence Name

1. p (p p) Idempotents of

2. p (p p) Idempotents of

3. (p q) (q p) Commutativity of

4. (p q) (q p) Commutativity of

5. (p q) r p (q r) Associativity of

6. (p q) r p (q r) Associativity of

7. ~ (p q) ~ p ~ q De Morgan’s law 1

8. ~ (p q) ~ p ~ q De Morgan’s law 2

9. p (q r) (p q) (p r) Distributive of over

10. p (q r) (p q) (p r) Distributive of over

11. p 1 1 Null or Domination law 1

12. p 0 0 Null or Domination law 2

13. p 1 p Identity law 1

14. p 0 p Identity law 2

15. p ~ p 1 Negation law 1

16. p ~ p 0 Negation law 2

17. ~ (~ p) p Double Negation law
(Involution)

18. p q ~ p q Implication law

19. p q (p q) (q p) Equivalence law

20. (p q) r p (q r) Exportation law

21. (p q) (p ~ q) p Absurdity law

22. p q ~ q ~ p Contrapositive law

23. p (p q) p Absorption law 1

24. p (p q) p Absorption law 2

25. p q (p q) (~ p ~ q) Biconditional law

Example 2.23: Show that ~ (p (~ p q) and ~ p ~ q are logically
equivalent.
Solution: Instead of a truth table we shall establish equivalence by developing
a series of logical equivalences using Table of Example 2.22, starting with ~ (p

(~ p q) and ending with ~ p ~ q.
~ (p (~ p q) ~ p ~ (~ p q) by De Morgan’s law 1

~ p (~ (~ p) ~ q) by De Morgan’s law 2

NOTES

Self-Instructional
Material 31

Tautology~ p (p ~ q) by Involution law
(~ p p) (~ p ~ q) by Distributive law of over
0 (~ p ~ q) by Negation law 2
(~ p ~ q) 0 by Commutative law of
~ p ~ q by Identity law 2

Hence, ~ (p (~ p q)) and ~ p ~ q are logically equivalent.
Example 2.24: Show that (p q) (p q) 1.
Solution:

(p q) (p q) ~ (p q) (p q) by Implication law
(~ p ~ q) (p q)by De Morgan’s law 2
~ p (~ q p) q by Associative law of
~ p (p ~ q) q by Commutative law of
(~ p p) (~ q q)by Associative law of
1 1 by Negation law 1
1 by Domination law 1

Hence proved.
Note: This could also be done using a truth table.
Example 2.25: Show that (~p (~ q r)) (q r) (p r) r.
Solution:

(~ p (~ q r)) (q r) (p r)
(~ p (~ q r)) ((q p) r) by Distributive law of over
((~ p ~ q) r) ((q p) r) by Associative law of
((~ p ~ q) (q p)) r by Distributive law of on
(~ (p q) (p q)) r by De Morgan’s law 1 and

 Commutative law of
1 r by Negation law 1
r by Identity law 1

Hence proved.

Example 2.26: Show that

(p q) ~ (~ p (~ q ~ r))) (~ p ~ q) (~ p ~ r) is a tautology.
Solution: Consider,

Tautology

NOTES

Self-Instructional
32 Material

(~ p ~ q) (~ p r)
 ~ (p q) ~ (p r) by De Morgan’s law 1
~ ((p q) (p r)) by De Morgan’s law 2
~ (~ p (~ q ~ r))

 ~ (~ p ~ (q r)) by De Morgan’s law 2
~ (~ p) ~ (~ (q r)) by De Morgan’s law 2
p (q r) by Involution law
(p q) (p r) by Distributive law of over

Hence, the given formula is equivalent to,
((p q) (p r)) ~ ((p q) (p r))

If we substitute (p q) (p r) for p in p ~ p, we get the above
formula. But p ~ p 1, the given formula is a tautology.
Example 2.27: Prove the following equivalences.

(i) p (q p) ~ p (p q)
(ii) p (q r) (p q) (p r)

(iii) (p q) (r q) (p r) q
(iv) ~ (p q) (p q) ~ (p q)

Solution:
(i) Consider, p (q p) ~ p (~ q p) by Implication law

(~ p p) ~ q byAssociative and Commutative
laws of

1 ~ q by Negation law 1
 1 by Null law 1

Again, ~ p (p q) ~ (~ p) (~ p q) by Implication law
p (~ p q) by Involution law
(p ~ p) q by Associative law of
1 q by Negation law 1
1 by Null law 1

Hence, p (q p) ~ p (p q).
(ii) p (q r) ~ p (q r) by Implication law

~ p ~ p (q r), since ~ p ~ p ~ p
(~ p q) (~ p r)
by Associative and Commutative laws of

(p q) (p r) by Implication law

NOTES

Self-Instructional
Material 33

Tautology(iii) (p q) (r q) (~ p q) (~ r q) by Implication law
(~ p ~ r) q by Distributive law of over

~ (p r) q by De Morgan’s law 1
(p q) q by Implication law

(iv) ~ (p q) ~ ((p q) ~ (p q)) by biconditional and De Morgan’s
law 1

~ (p q) ~ (~ (p q)) by De Morgan’s law 1
~ (p q) (p q) by Involution law
(p q) ~ (p q) by Commutative law of

Example 2.28: Write an equivalent formula for p (q r) (r p) which
does not contain the biconditional.
Solution: Since p q (p q) (q p), p (q r) (r p)
p (q r) (r q)) ((r p) (p r)).
Example 2.29: Write an equivalent formula for p (q r) which contains
neither the biconditional nor the conditional.
Solution: Since, p q (p q) (q p) and p q ~ p q.

p (q r) p ((q r) (r q))
p ((~ q r) (~ r q))

Implication
A proposition p is said to logically imply or tautologically imply or
simply imply a proposition q if q is true whenever p is true. We can also define
this notion as follows:
A proposition p is said to logically imply a proposition q if p q is a tautolgoy.
The implication of p to q is denoted by p q.
Notes: 1. One can determine whether p q by constructing the truth table

of p and q in the same manner as was done in the determination of
p q.

Notes 2. Since (p q) (p q) (q p) (equivalence law), it is easy
to see from the definition of equivalence and implication that p
q and if and only if p q and q p. This statement is an
alternative definition of the equivalence as two propositions.

The implications in Table 2.2 have important applications. All of them can be
proved by truth table or by other methods.

Tautology

NOTES

Self-Instructional
34 Material

Table 2.2 Logical Implications

Implication Name
1. p q p Conjunctive simplification
2. p q q Conjunctive simplification
3. p p q Disjunctive addition
4. p (p q) q Detachment
5. ~ q (p q) ~ p Contrapositive
6. (p q) ~ q p Disjunctive simplification
7. (p q) ~ p q Disjunctive simplification
8. (p q) (q r) (p r) Chain rule
9. ~ p p q

10. q p q
11. ~ (p q) p
12. ~ (p q) ~ q

13. (p q) (p q) (q r) r Dilemma

14. p q p q

15. p (q r) (p q) (p r)

Example 2.30: Show that p q logically implies p q.
Solution: Consider the truth table of p q and p q. Now p q is true
in line 1 and 4, and in these cases p q is also true. Hence, p q implies
p q.

Truth Table

p q p q p q

0 0 1 1
0 1 0 1
1 0 0 0
1 1 1 1

Now we will introduce two methods to show p q.
Method 1: To show the implication p q, we assume that p has the truth
value 1 and then show that this assumption leads to q having the value 1. Then
p q must have the value 1.
Method 2: To show p q, we assume that q has the truth value 0 and then
show that this assumption leads to p having the value 0. Then p q must have
the truth value 1.

NOTES

Self-Instructional
Material 35

TautologyExample 2.31: Prove that the implication given in the Table 2.2 for,
(p q) (p r) (q r) r, is true.
Solution: Now by method 1, we assume that (p q) (p r) (q r) is
true. This assumption means that p q, p r and q r are true. Since p
q is true, at least one p or q is true. If p is true then r must be true since p
r is true. If q is true then, r must be true since q r is true. So, r is true.
Hence, the result (13) in Table 2.2 is true..

Example 2.32: Prove that the implication given in the Table 2.2 ~ q
(p q) ~ p, is true.
Solution: Now by method 2, assume that ~ p is false, so, p is true. If q is true
then ~ q is false. If q is false then p q is false. So, in both cases, ~ q (p

 q) is false. Hence, the implication (5) in Table 2.2 is true.

Example 2.33: Show the following implications:
(i) (p q) p q

(ii) p q p
(iii) p (q r) (p q) (p r)

Solution:
(i) Assume that p q is true. This means that p and q are true. So, p

q must also be true. Hence, by method 1, the result follows.
(ii) Assume that p is true. Then, for all possible truth values of q, q p is

true. Hence, by method 1, the result follows.
(iii) Assume that (p q) (p r) is false. Then p r is false and p

q is true. This means that p and q are true. Since r is false, q r is
false and hence p (q r) must also be false. Hence, by method 2,
the implication follows.

Example 2.34: Show the following implications without constructing the truth
tables.

(i) p q p (p q)
(ii) (p q) q p q
(iii) ((p ~ p) q) ((p ~ p) r) q r
(iv) (q (p ~ p)) (r (p ~ p)) r q

Solution:
(i) Assume that p (p q) is false. Then, p is true and p q is false.

So, q is false. Hence, p q is false. So, by method 2, the implication
follows.

(ii) Assume that p q is false. This means that both p and q are false. So,
p q is true and hence (p q) q is false. Hence, by method 2,
the result follows.

Tautology

NOTES

Self-Instructional
36 Material

(iii) Suppose that q r is false. Then, q is true and r is false. This
implies that (p ~p) q is true and p ~q r is false. Hence
(p ~ p) q
((p ~ p) r) is false. By method 2, the result follows.

(iv) Assume that r q is false. Then, r is true and q is false. So, q ((p
~ p) is true and r (p ~ p) is false. Hence, (q (p ~ p)

r (p ~ p)) is false and the result follows.
Note: Note that p ~ p is always true and p ~ p is always false.

Example 2.35: If p1, p2, ..., pn and p imply q, then p1, p2, ..., pn imply p q.
Solution: Let us assume that (p1 p2 ... pn p) q
This means (p1 p2 ... pn p) q is a tautology:

But we know that (Example 2.22) (p q) r p (q r)
Using this, we get (p1 p2 ... pn) (p q) is a tautology.
Hence, (p1 p2 ... pn) (p q).

2.4 REPLACEMENT PROCESS

In discrete mathematics, the replacement process can be defined on the basis of
‘Rules of Equivalence or Replacement’ which is also termed as ‘De Morgan’s
Rule’.

De Morgan stated that, ‘The statements that say the same thing or are
equivalent to one another are very important to a system of logical deduction’. De
Morgan’s Theorems are abbreviated as DeM.

For example, if we have a true conjunction then we can assume that either
of its parts is true. If in the statement there is a ‘neither…nor’ statement, then there
is a conjunction, such as ‘It will neither rain nor snow’. This statement is similar or
equivalent to the statement ‘It will not rain and it will not snow either’. Hence, a
‘neither…nor’ statement can be simplified and replaced if it is equivalent to a
conjunction of negatives.

Since two logically equivalent statements have the same truth value on every
possible combination of truth values for their component parts, therefore is no
change in the truth value of any statement when one of the value is replaced with
the other. Consequently, while constructing proofs of validity one has to safely use
a statement containing either one of a pair of logical equivalents as the premise for
a step whose conclusion is exactly the similar or equivalent, except that it contains
the other one.

The tautological statement are represented using the connective ‘ ’. In order
for the ‘ ’ statement to be true on every line, the statement forms on either side of
it must always have exactly the similar or equivalent truth value. Statements that

NOTES

Self-Instructional
Material 37

Tautologyare substitution instances of these two component statement forms are termed as
logically equivalent, irrespective of the content, the conditions for their truth or
falsity are exactly similar or equivalent. Consider the following example.

Double Negation (DN) p a ~ ~p

As per De Morgan’s Theorems (DeM) ~(p • q) (~p v ~q)
~(p v q) (~p • ~q)

Implication (p q) (~p v q)

Equivalence [p q] [(p q) • (q p)]
[p q] [(p • q) v (~p • ~q)]

Transposition (p q) (~q ~p)
The tautological biconditional can be used as rules of replacement.

2.5 LAW OF DUALITY

Let S be any identity involving sets and the set operations , and C. If T is
obtained from S by applying the substitutions ; ,

, then T is also true and T is called as dual of S. For example

The dual of A B A) is A B A) = A.
Two formulae or propositions are said to be dual of each other if either

one can be obtained from the other by replacing by and by .
Notes: 1. The connectives and are called duals. If the proposition contains

the special variables 1 or 0, then its dual, is obtained by replacing
1 by 0 and 0 by 1 in addition to the above mentioned interchanges.

Notes 2. If any two formulae are equivalent, then their duals are also equivalent
to each other.

Example 2.36: Write the duals of the following:

(i) (p q) r (ii) (p q) 1
(iii) ~ (p q) (p ~ (q ~ s))

Solution: The duals are:
(i) (p q) r (ii) (p q) 0 (iii) ~ (p q) (p ~ (q ~

s)).

Example 2.37: Show that,

(i) ~ (p q) (~ p (~ p q)) (~ p q)
(ii) (p q) (~ p (~ p q)) (~ p q)

Tautology

NOTES

Self-Instructional
38 Material

Solution:
(i) ~ (p q) (~ p (~ p q))

(p q) (~ p (~ p q)) by Implication and Involution
laws

(p q) (~ p q) by Associative law

((p q) ~ p) q by Associative law

((p ~ p) (q ~ p)) q by Distributive law

(1 (q ~ p)) q by Negation law

(q ~ p) q by Identity law 1

~ p q by Associative, idempotent and Commutative laws

(ii) In (i) we have proved that,

(p q) (~ p (~ p q)) (~ p q)
By Note (2) of duelity,

(p q) (~ p (~ p q)) (~ p q)

Check Your Progress

1. Explain the tautology.
2. Define the contradiction.
3. What is contingency?
4. State the substitution instance.
5. Interpret the conditional statement.
6. What do you understand by the biconditional statement?
7. Explain the equivalence of propositions.
8. Analyse the implications of propositions.
9. Define the replacement process.

10. Elaborate on the law of duality.

2.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Tautology: A statement formula which is true regardless of the truth values
of the statements which replace the variables in it is called a tautology or a
logical truth or a universally valid formula.

NOTES

Self-Instructional
Material 39

Tautology2. Contradiction: A statement formula which is false regardless of the truth
values of the statements which replace the variables in it is called a
contradiction.

3. Contingency: A statement formula that is neither a tautology nor a
contradiction is called a contingency.

4. Substitution instance: A formula A is called a substitution instance of another
formula B, if A can be obtained from B by substituting formulae for some
variables of B, with the condition that the same formula is substituted for the
same variables each time it occurs.

5. ‘If you work hard you will be successful.’ Suppose p stands for ‘You work
hard’ and q stands for ‘You will be successful.’ In symbols, the above
statement can be written as p q.
Such statements are called Conditional Statements. Here q depends upon
p, but p need not depend upon q.

6. If two conditional statements are combined such as p q and q P, then
it is known as biconditional statement, it is denoted as p q.

7. Two propositions are logically equivalent or simply equivalent if they have
exactly the same truth values under all circumstances.

8. A proposition p is said to logically imply or tautologically imply or
simply imply a proposition q if q is true whenever p is true. We can also
define this notion as follows:
A proposition p is said to logically imply a proposition q if p q is a
tautolgoy. The implication of p to q is denoted by p q.

9. In discrete mathematics, the replacement process can be defined on the
basis of ‘Rules of Equivalence or Replacement’ which is also termed as
‘De Morgan’s Rule’.

10. Let S be any identity involving sets and the set operations , and C.
If T is obtained from S by applying the substitutions ; ,

, then T is also true and T is called as dual of S. For
example,
The dual of A B A) is A B A) = A.

2.7 SUMMARY

Tautology: A statement formula which is true regardless of the truth values
of the statements which replace the variables in it is called a tautology or a
logical truth or a universally valid formula.
Contradiction: A statement formula which is false regardless of the truth
values of the statements which replace the variables in it is called a
contradiction.

Tautology

NOTES

Self-Instructional
40 Material

Contingency: A statement formula that is neither a tautology nor a
contradiction is called a contingency.
Substitution instance: A formula A is called a substitution instance of another
formula B, if A can be obtained from B by substituting formulae for some
variables of B, with the condition that the same formula is substituted for the
same variables each time it occurs.
‘If you work hard you will be successful.’ Suppose p stands for ‘You work
hard’ and q stands for ‘You will be successful.’ In symbols, the above
statement can be written as p q.
Such statements are called Conditional Statements. Here q depends upon
p, but p need not depend upon q.
If two conditional statements are combined such as p q and q P, then
it is known as biconditional statement, it is denoted as p q.
Two propositions are logically equivalent or simply equivalent if they have
exactly the same truth values under all circumstances.
A proposition p is said to logically imply or tautologically imply or
simply imply a proposition q if q is true whenever p is true. We can also
define this notion as follows:
A proposition p is said to logically imply a proposition q if p q is a
tautolgoy. The implication of p to q is denoted by p q.
In discrete mathematics, the replacement process can be defined on the
basis of ‘Rules of Equivalence or Replacement’ which is also termed as
‘De Morgan’s Rule’.
Let S be any identity involving sets and the set operations , and C.
If T is obtained from S by applying the substitutions ; ,

, then T is also true and T is called as dual of S. For
example,
The dual of A B A) is A B A) = A.

2.8 KEY WORDS

Tautology: A statement formula which is true regardless of the truth values
of the statement which replace the variables in it, is called a tautology or a
logical truth or a universally valid formula.
Contradiction: A statement formula which is false regardless of the truth
values of the statement which replace the variables in it, is called a
contradiction.
Contingency: A statement formula that is neither a tautology nor a
contradiction is called a contingency.

NOTES

Self-Instructional
Material 41

TautologySubstitution instance: A formula A is called a substitution instance of
another formula B, if A can be obtained from B by substituting formulae for
some variables of B, with the condition that the same formula is substituted
for the same variables each time it occurs.
Equivalence: Two propositions are logically equivalent or simply equivalent
if they have exactly the same truth values under all circumstances.
Implication: A proposition p is said to logically imply a proposition q if
p q is a tautology. The implication of p to q is denoted by p q.
Duality: Two formulae or propositions are said to be dual of each other if
either one can be obtained from the other by replacing by and by .

2.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the term tautology.
2. What is contradiction?
3. Define contingency.
4. Elaborate on the substitution instance.
5. Analyse the biconditional statement.
6. What do you understand by the equivalence?
7. Interpret the implication.
8. State the replacement process.
9. Explain the law of duality.

Long-Answer Questions

1. Discuss about the equivalence formula and tautology giving suitable examples
of each.

2. Show that two propositions p q and ~ p ~ q are logically equivalent.
3. Show that (p q) (p q) is a tautology.
4. Verify that the proposition (p ~ q) ~ (p ~ q) is a tautology.
5. Write the truth tables for and operators.
6. Write the truth table of the conditional operator.
7. Write the truth table for the biconditional.

8. Write the truth table of c: () .q p q p

Tautology

NOTES

Self-Instructional
42 Material

2.10 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 43

Normal Forms

UNIT 3 NORMAL FORMS

Structure
3.0 Introduction
3.1 Objectives
3.2 Normal and Principal Forms
3.3 Answers to Check Your Progress Questions
3.4 Summary
3.5 Key Words
3.6 Self Assessment Questions and Exercises
3.7 Further Readings

3.0 INTRODUCTION

In mathematics, the normal forms are typically used to solve the mathematical
problems specifically in decision making problems for finding whether a given

statement is a tautology or a contradiction or agreeable and acceptable in a
finite number of steps. For finding appropriate answers to decision problems, we
construct the truth tables, which may not be possible always. Hence, we use an
alternate method termed as the reduction to normal forms.

A normal form is a representation such that zero is uniquely represented.
This allows testing for equality by putting the difference of two objects in normal
form. a formula is in Conjunctive Normal Form (CNF) or clausal normal form if it
is a conjunction of one or more clauses, where a clause is a disjunction of literals;
otherwise put, it is a product of sums or an AND of ORs. As a canonical normal
form, it is useful in automated theorem proving and circuit theory.

All conjunctions of literals and all disjunctions of literals are in CNF, as they
can be seen as conjunctions of one-literal clauses and conjunctions of a single
clause, respectively. As in the Disjunctive Normal Form (DNF), the only
propositional connectives a formula in CNF can contain are and, or, and not. The
not operator can only be used as part of a literal, which means that it can only
precede a propositional variable or a predicate symbol.

A Disjunctive Normal Form (DNF) is a canonical normal form of a logical
formula consisting of a disjunction of conjunctions; it can also be described as an
OR of ANDs, a sum of products, or (in philosophical logic) a cluster concept. As
a normal form, it is useful in automated theorem proving.

In this unit, you will study about the normal forms, disjunctive normal form,
conjunctive normal form, and principal of normal forms.

Normal Forms

NOTES

Self-Instructional
44 Material

3.1 OBJECTIVES

After going through this unit, you will be able to:
Understand the normal forms
Explain the disjunctive normal form
Define the conjunctive normal form
Elaborate on the principal of normal forms

3.2 NORMAL AND PRINCIPAL FORMS

In mathematics, the normal forms are typically used to solve the mathematical
problems specifically in decision making problems for finding whether a given
statement is a tautology or a contradiction or agreeable and acceptable in a finite
number of steps. For finding appropriate answers to decision problems, we construct
the truth tables, which may not be possible always. Hence, we use an alternate
method termed as the reduction to normal forms.

Basically, the normal forms are of following two types:
1. Disjunctive Normal Form (DNF)
2. Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF): A formula which is equivalent to a given
formula and which consists of a sum of elementary products is called a Disjunctive
Normal Form (DNF) of given formula. The notation is given as,

 (P Q) (Q R) (P Q R)
The Disjunctive Normal Form (DNF) of formula is not exceptional.
If p, q are two statements, then “p or q” is a compound statement, denoted

by p q and referred as the disjunction of p and q. The disjunction of p and q is
true whenever at least one of the two statements is true, and it is false only when
both p and q are false. Consider the following truth table.

Truth Table

p q p q

T T T

T F T

F T T

F F F

NOTES

Self-Instructional
Material 45

Normal FormsFor example, if p is “4 is a positive integer” and q is “ 5is a rational number”,
then p q is true as statement p is true, although statement q is false.
Conjunctive Normal Form (CNF): A formula which is equivalent to a given
formula and which consists of a product of elementary products is called a
Conjunctive Normal Form (CNF) of given formula. The notation is given as,

 (P Q) (Q R) (P Q R)
The Conjunctive Normal Form (CNF) of formula is not exceptional. If

every elementary sum in CNF is tautology, then given formula is also tautology.
If p, q are two statements, then “p and q” is a compound statement, denoted

by p q and referred as the conjunction of p and q. The conjunction of p and q is
true only when both p and q are true, otherwise, it is false. Consider the following
truth table.

Truth Table

p q p q
T T T
T F F
F T F
F F F

For example, if statement p is “6 < 7” and statement q is “ 3 > 4” then the
conjunction of p and q is true as both p and q are true statements.

PDNF and PCNF

PDNF: PDNF stands for Principal Disjunctive Normal Form. It refers to the Sum
of Products, i.e., SOP. For example, if P, Q, R are the variables then
(P . Q’ . R) + (P’ . Q . R) + (P . Q . R’) is an example of an expression in PDNF.
In this expression ‘+’ (Sum) is referred as the main operator.

The key difference between DNF (Disjunctive Normal Form) and PDNF
(Principal Disjunctive Normal Form) is that in case of DNF, it is not essential that
the length of all the variables in the expression is similar. For example,

1. (P . Q’ . R) + (P’ . Q . R) + (P . Q) is an example of an expression in
DNF but not in PDNF.

2. (P . Q’ . R) + (P’ . Q . R) + (P . Q . R’) is an example of an expression
which is both in PDNF and DNF.

PCNF: PCNF stands for Principal Conjunctive Normal Form. It refers to the
Product of Sums, i.e., POS. For example, if P, Q, R are the variables then
(P + Q’+ R).(P’+ Q + R).(P + Q + R’) is an example of an expression in PCNF.
In this expression the ‘.’ (Product) is referred as the main operator.

Normal Forms

NOTES

Self-Instructional
46 Material

The key difference between PCNF (Principal Conjunctive Normal Form)
and CNF (Conjunctive Normal Form) is that in case of CNF, it is not essential
that the length of all the variables in the expression is similar. For example,

1. (P + Q’+ R).(P’+ Q + R).(P + Q) is an example of an expression in
CNF but not in PCNF.

2. (P + Q’+ R).(P’+ Q + R).(P + Q + R’) is an example of an expression
which is both in PCNF and CNF.

Properties of PCNF and PDNF

Following are the properties of PCNF and PDNF:
1. Every PDNF or PCNF corresponds to a unique Boolean Expression and

vice versa.
2. If X and Y are two Boolean expressions, then X is equivalent to Y if and

only if PDNF(X) = PDNF(Y) or PCNF(X) = PCNF(Y).
3. For a Boolean Expression, if PCNF has m terms and PDNF has n terms,

then the number of variables in such a Boolean expression = log2 (m + n).

Check Your Progress

1. Explain the normal forms.
2. Define disjunctive normal form.
3. Analyse the conjunctive normal form.
4. Interpret the PDNF.
5. Explain the PCNF.
6. State the properties of PCNF and PDNF.

3.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. In mathematics, the normal forms are typically used to solve the mathematical
problems specifically in decision making problems for finding whether a
given statement is a tautology or a contradiction or agreeable and acceptable
in a finite number of steps.

2. Disjunctive Normal Form (DNF): A formula which is equivalent to a given
formula and which consists of a sum of elementary products is called a
Disjunctive Normal Form (DNF) of given formula. The notation is given as,
(P Q) (Q R) (P Q R)
The Disjunctive Normal Form (DNF) of formula is not exceptional.

NOTES

Self-Instructional
Material 47

Normal Forms3. Conjunctive Normal Form (CNF): A formula which is equivalent to a given
formula and which consists of a product of elementary products is called a
Conjunctive Normal Form (CNF) of given formula. The notation is given
as,

(P Q) (Q R) (P Q R)
4. PDNF: PDNF stands for Principal Disjunctive Normal Form. It refers to

the Sum of Products, i.e., SOP. For example, if P, Q, R are the variables
then (P . Q’ . R) + (P’ . Q . R) + (P . Q . R’) is an example of an expression
in PDNF. In this expression ‘+’ (Sum) is referred as the main operator.

5. PCNF: PCNF stands for Principal Conjunctive Normal Form. It refers to
the Product of Sums, i.e., POS. For example, if P, Q, R are the variables
then (P + Q’+ R).(P’+ Q + R).(P + Q + R’) is an example of an expression
in PCNF. In this expression the ‘.’ (Product) is referred as the main operator.

6. Following are the properties of PCNF and PDNF:
Every PDNF or PCNF corresponds to a unique Boolean Expression
and vice versa.
If X and Y are two Boolean expressions, then X is equivalent to Y if and
only if PDNF(X) = PDNF(Y) or PCNF(X) = PCNF(Y).
For a Boolean Expression, if PCNF has m terms and PDNF has n
terms, then the number of variables in such a Boolean expression = log2
(m + n).

3.4 SUMMARY

In mathematics, the normal forms are typically used to solve the mathematical
problems specifically in decision making problems for finding whether a
given statement is a tautology or a contradiction or agreeable and acceptable
in a finite number of steps.
Disjunctive Normal Form (DNF): A formula which is equivalent to a given
formula and which consists of a sum of elementary products is called a
Disjunctive Normal Form (DNF) of given formula. The notation is given as,

(P Q) (Q R) (P Q R)
The Disjunctive Normal Form (DNF) of formula is not exceptional.
Conjunctive Normal Form (CNF): A formula which is equivalent to a given
formula and which consists of a product of elementary products is called a
Conjunctive Normal Form (CNF) of given formula. The notation is given
as,

(P Q) (Q R) (P Q R)

Normal Forms

NOTES

Self-Instructional
48 Material

The Conjunctive Normal Form (CNF) of formula is not exceptional. If
every elementary sum in CNF is tautology, then given formula is also
tautology.
PDNF: PDNF stands for Principal Disjunctive Normal Form. It refers to
the Sum of Products, i.e., SOP. For example, if P, Q, R are the variables
then (P . Q’ . R) + (P’ . Q . R) + (P . Q . R’) is an example of an expression
in PDNF. In this expression ‘+’ (Sum) is referred as the main operator.
PCNF: PCNF stands for Principal Conjunctive Normal Form. It refers to
the Product of Sums, i.e., POS. For example, if P, Q, R are the variables
then (P + Q’+ R).(P’+ Q + R).(P + Q + R’) is an example of an expression
in PCNF. In this expression the ‘.’ (Product) is referred as the main operator.
The key difference between DNF (Disjunctive Normal Form) and PDNF
(Principal Disjunctive Normal Form) is that in case of DNF, it is not essential
that the length of all the variables in the expression is similar.
Every PDNF or PCNF corresponds to a unique Boolean Expression and
vice versa.
If X and Y are two Boolean expressions, then X is equivalent to Y if and
only if PDNF(X) = PDNF(Y) or PCNF(X) = PCNF(Y).
For a Boolean Expression, if PCNF has m terms and PDNF has n terms,
then the number of variables in such a Boolean expression = log2 (m + n).

3.5 KEY WORDS

Normal forms: In mathematics, the normal forms are typically used to
solve the mathematical problems specifically in decision making problems
for finding whether a given statement is a tautology or a contradiction or
agreeable and acceptable in a finite number of steps. Basically, the normal
forms are of two types, Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF).
Disjunctive normal form (DNF): A formula which is equivalent to a given
formula and which consists of a sum of elementary products is called a
Disjunctive Normal Form (DNF) of given formula. The notation is given as,
(P Ù ~ Q) (Q Ù R) Ú (~ P Ù Q Ù ~ R). The Disjunctive Normal Form
(DNF) of formula is not exceptional.
Conjunctive normal form (CNF): A formula which is equivalent to a given
formula and which consists of a product of elementary products is called a
Conjunctive Normal Form (CNF) of given formula. The notation is given
as, (P ~ Q) (Q R) (~ P Q ~ R). The Conjunctive Normal
Form (CNF) of formula is not exceptional. If every elementary sum in CNF
is tautology, then given formula is also tautology.

NOTES

Self-Instructional
Material 49

Normal Forms
3.6 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1. Define the normal forms.
2. Explain disjunctive normal form.
3. Elaborate on the conjunctive normal form.
4. Analyse the properties of PCNF and PDNF.
5. Interpret the principal of normal forms.

Long-Answer Questions
1. What are normal forms? Discuss the types of normal forms giving examples

of each type.
2. Explain briefly about the Disjunctive Normal Form (DNF) and Conjunctive

Normal Form (CNF) giving definition, notations, examples and truth tables.

3. Find the conjunction and disjunction of the propositions p and q where p is
the proposition ‘Today is Monday’ and q is the proposition ‘It is raining
today’. Write in symbolic form.

4. Obtain the conjunctive normal form of:
(i) ~ (p q) (ii) ~ (p q) (iii) ~ (p q)

5. Obtain the conjunctive normal forms of the following formulas:
(i) (p q r) (~ p r q) (~ p ~ q ~ r)
(ii) (p q) (~ p q) (p ~ q)
(iii) (p q) (~ p q r)

6. Obtain the disjunctive normal forms of:
(i) (p (q r)) (~ p (~ q ~ r))
(ii) (~ p ~ q) (p ~ q)
(iii) (p (~ p (q (~ q r)))

7. Obtain the disjunctive normal forms of:
(i) p (p q) (ii) p (~ p q) (iii) (p q) (~ p q) (q r)

8. Obtain the disjunctive and conjunctive normal forms of the following formulas
and hence state which of the formulas are tautologies?
(i) q (p ~ q) (~ p ~ q) (ii) q (p ~ q)
(iii) (q p) (~ p q) (iv) p (p (q p))

Normal Forms

NOTES

Self-Instructional
50 Material

3.7 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 51

Inference Theory

UNIT 4 INFERENCE THEORY

Structure
4.0 Introduction
4.1 Objectives
4.2 Theory of Inference
4.3 Rules of Inference
4.4 Open Statement
4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self Assessment Questions and Exercises
4.9 Further Readings

4.0 INTRODUCTION

Theory of inference is a logical form consisting of a function which takes premises,
analyses their syntax, and returns a conclusion (or conclusions). For example, the
rule of inference called modus ponens takes two premises, one in the form “If p
then q” and another in the form “p”, and returns the conclusion “q”. The rule is
valid with respect to the semantics of classical logic (as well as the semantics of
many other non-classical logics), in the sense that if the premises are true (under
an interpretation), then so is the conclusion.

Typically, a rule of inference preserves truth, a semantic property. In many-
valued logic, it preserves a general designation. But a rule of inference’s action is
purely syntactic, and does not need to preserve any semantic property: any function
from sets of formulae to formulae counts as a rule of inference. Usually only rules
that are recursive are important; i.e., rules such that there is an effective procedure
for determining whether any given formula is the conclusion of a given set of formulae
according to the rule. An example of a rule that is not effective in this sense is the
infinitary -rule.

In this unit, you will study about the theory of inference, rules of inference,
and open statements.

4.1 OBJECTIVES

After going through this unit, you will be able to:
Comprehend the theory of inference
Explain the rules of inference
Analyse the open statements

Inference Theory

NOTES

Self-Instructional
52 Material

4.2 THEORY OF INFERENCE

To draw inference we must have some rule or a set of rules that serves the basis of
inference, otherwise inference will not have sound reasoning. This uses the rules of
inference given for the statement calculus along with additional rules needed to
deal with formulas with quantifiers. We can draw inference on any given statement
with symbols and logical connectives either by truth table of by applying rules of
inference that are given in subsequent topic.

If case conclusion has the form of a conditional statement, rule of Conditional
Proof called CP is used. For using equivalences and implications, some rules are
needed to eliminate quantifiers for such derivation.

Rules of specification, known as rules US (Universal Specification) and
ES (Existential Specification) are used for the purpose of elimination. After
eliminating quantifiers the inference is drawn. If the desired conclusion is to be
quantified, rules of generalization called rules UG (Universal Generalization)
and EG (Existential Generalization) are used to attach a quantifier.

All these rules are given under the topic ‘Rules for inference’.
We can draw inference on any given statement with symbols and logical

connectives either by truth table of by applying rules of inference that are given in
subsequent topic.

Two statements are equivalent if they have identical truth values. A logical
statement is valid when it is a tautology. To check this, truth tables are constructed.

4.3 RULES OF INFERENCE

Table 4.1 illustrates the rules of inference and the implications form of each type.
Table 4.1

Rules of Inference Implication Form
Addition I1

p
p P p

Conjunction I2

p P p

Simplification I3

p
p

(p p)

NOTES

Self-Instructional
Material 53

Inference TheoryModus Tollens I4

p [)](p p
 p

Disjunctive Syllogism I5
 p

p
[)](pp

Modus Ponens
p
p

pp

Hypothetical Syllogism I7
p

R
p R RPRP

Conjunctive Dilemma
sRP

p R
s

SRpSRp

Disjunctive Dilemma
SRp

s

p R [(p) (R S)] [S]
(p R)

Besides, we can use the two rules of inference called Rules P and T.

Rule P: A premise may be introduced at any point in the derivation.
Rule T: A formula S may be introduced in a derivation if S is tautologically implied
by any one or more of the preceeding formulae in the derivation of a truth value.

Example 4.1: For the given set of arguments check the validity of conclusion:
(i) If determinism is true then we have no free will.
(ii) If Heisenberg’s interpretation of quantum physics is correct, then there

are events not necessiated by prior events.

Inference Theory

NOTES

Self-Instructional
54 Material

(iii) If there are events not necessitated by prior events, then we have free will.
Conclusion: If Heisenberg interpretation of physics is correct then we have free
will.

Solution: D : Determinism is true.
Q : We have no free will.
R : Heisenberg interpretation of quantum physics is correct.
S : There are events not necessitated by prior events.

Arguments: (D) (R S)(S)
Conclusion: R

(i) SR Rule P

(ii) R Rule P

From cases (i) and (ii), we get :
(iii) R Ø rule T and hypothetical syllogism.

4.4 OPEN STATEMENT

In discrete mathematics, ‘Inference Rules’ are the templates for generating valid
arguments. Inference rules are applied to derive proofs in artificial intelligence,
and the proof is a sequence of the conclusion that leads to the desired goal. In
inference rules, the implication among all the connectives plays an important role.

Fundamentally, a sentence is a group of words which arrange themselves in
a meaning manner. Any sentence which we say or write or think is considered as
a statement. In mathematics also we define the statements which are referred as
the mathematically valid statements or mathematically invalid statements.

A mathematical statement is the basic unit of any mathematical reasoning. A
mathematical reasoning is either inductive (mathematical induction) or deductive.
Any assertive sentence which is either ‘True’ or ‘False’ but not both is considered
as a mathematically acceptable statement. This type of statement is a valid
statement. Any ambiguous sentence is not a statement and hence it is invalid.

In mathematics, a sentence whose truth value can be determined is called
a statement or proposition. A statement is also called a closed sentence because
its truth value is not open to question.

Statements that cannot be answered absolutely are called open
statements or open sentences. A compound statement is formed by using logical
connectives on individual statements.

Definition for Open Statements: A sentence which contains one or more
variable such that when certain values are given to the variable it becomes a statement
is an open statement.

NOTES

Self-Instructional
Material 55

Inference TheoryConsider the following example.
Let P be a statement.
P is an open statement if and only if P contains at least one free occurrence

of a variables that appears in it.
For example, the statement x is a prime number is an open statement, as the

variable x appears as a free occurrence.

Check Your Progress

1. Define the theory of inference.
2. What are the rules of specifications?
3. State the rules of generalisation.
4. Elaborate on the open statements.

4.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. To draw inference we must have some rule or a set of rules that serves the
basis of inference, otherwise inference will not have sound reasoning. This
uses the rules of inference given for the statement calculus along with
additional rules needed to deal with formulas with quantifiers. We can draw
inference on any given statement with symbols and logical connectives either
by truth table of by applying rules of inference that are given in subsequent
topic.

2. Rules of specification, known as rules US (Universal Specification) and ES
(Existential Specification) are used for the purpose of elimination. After
eliminating quantifiers the inference is drawn.

3. Rules of generalization called rules UG (Universal Generalization) and EG
(Existential Generalization) are used to attach a quantifier.

4. Statements that cannot be answered absolutely are called open statements
or open sentences. A compound statement is formed by using logical
connectives on individual statements.

4.6 SUMMARY

To draw inference we must have some rule or a set of rules that serves the
basis of inference, otherwise inference will not have sound reasoning. This
uses the rules of inference given for the statement calculus along with
additional rules needed to deal with formulas with quantifiers. We can draw
inference on any given statement with symbols and logical connectives either

Inference Theory

NOTES

Self-Instructional
56 Material

by truth table of by applying rules of inference that are given in subsequent
topic.
Rules of specification, known as rules US (Universal Specification) and ES
(Existential Specification) are used for the purpose of elimination. After
eliminating quantifiers the inference is drawn.
Rules of generalization called rules UG (Universal Generalization) and EG
(Existential Generalization) are used to attach a quantifier.
Statements that cannot be answered absolutely are called open statements
or open sentences. A compound statement is formed by using logical
connectives on individual statements.

4.7 KEY WORDS

Theory of inference: To draw inference we must have some rule or a set
of rules that serves the basis of inference, otherwise inference will not have
sound reasoning. Theory of inference is a logical form consisting of a function
which takes premises, analyses their syntax, and returns a conclusion (or
conclusions).
Rules of specification: These rules known as US (Universal Specification)
and ES (Existential Specification) which are used for the purpose of
elimination. After eliminating quantifiers the inference is drawn.
Rules of generalisation: Rules of generalisation called rules UG (Universal
Generalisation) and EG (Existential generalisation) which are used to attach
a quantifier.
Open statements: Statements that cannot be answered absolutely are
called open statements or open sentences. A compound statement is formed
by using logical connectives on individual statements.

4.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the inference theory.
2. Define the rules of specification.
3. What are the rules of generalisation?
4. Analyse the rules of inference.
5. Interpret the open statements.

NOTES

Self-Instructional
Material 57

Inference TheoryLong-Answer Questions

1. Briefly discuss the theory of inference.
2. Define the significances of rules of specification.
3. Analyse the rules of generalisation.
4. Elaborate on the ‘Rules of Inference’ in mathematical logic.
5. Explain the open statements with suitable example.

4.9 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

Quantifiers

NOTES

Self-Instructional
58 Material

BLOCK - II
QUANTIFIERS, LATTICES AND CODING THEORY

UNIT 5 QUANTIFIERS

Structure
5.0 Introduction
5.1 Objectives
5.2 Quantifiers
5.3 Bound and Free Variables
5.4 Theory of Inference for Predicate Calculus

5.4.1 Statement Calculus
5.4.2 Rule CP (Conditional Proof)
5.4.3 Consistent and Inconsistent

5.5 Answers to Check Your Progress Questions
5.6 Summary
5.7 Key Words
5.8 Self Assessment Questions and Exercises
5.9 Further Readings

5.0 INTRODUCTION

In mathematical logic, a quantifier is an operator that specifies how many individuals
in the domain of discourse satisfy an open formula. For instance, the universal
quantifier in the first order formula P(x) expresses that everything in the domain
satisfies the property denoted by p. On the other hand, the existential quantifier

 in the formula xP(x) expresses that there is something in the domain which
satisfies that property. A formula where a quantifier takes widest scope is called a
quantified formula. A quantified formula must contain a bound variable and a
subformula specifying a property of the referent of that variable.

The mostly commonly used quantifiers are and . These quantifiers are
standardly defined as duals and are thus interdefinable using negation. They can
also be used to define more complex quantifiers, as in the formula
which expresses that nothing has the property . Other quantifiers are only definable
within second order logic or higher order logics. Quantifiers have been generalised
beginning with the work of Mostowski and Lindström. First order quantifiers
approximate the meanings of some natural language quantifiers such as “Some”
and “All”. However, many natural language quantifiers can only be analysed in
terms of generalized quantifiers.

A free variable is a notation (symbol) that specifies places in an expression
where substitution may take place and is not a parameter of this or any container

NOTES

Self-Instructional
Material 59

Quantifiersexpression. Some older books use the terms real variable and apparent variable
for free variable and bound variable, respectively. The idea is related to a
placeholder (a symbol that will later be replaced by some value), or a wildcard
character that stands for an unspecified symbol. A bound variable is a variable that
was previously free, but has been bound to a specific value or set of values called
domain of discourse or universe.

In this unit, you will study about the quantifiers, bound and free variables,
and theory of inference for predicate calculus.

5.1 OBJECTIVES

After going through this unit, you will be able to:
Understand what quantifiers are
Explain the bound and free variables
Analyse the theory of inference for predicate calculus

5.2 QUANTIFIERS

When all the variables in a propositional function are assigned values, the resulting
statement has a truth value. However, there is another important way to change
propositional functions into propositions, called quantification. It has been broadly
classified into two types as follows:

(i) Universal Quantification
(ii) Existential Quantification

Universe of Discourse: Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the universe of discourse.
Such a statement is expressed using an universal quantification.

Universal Quantification: The universal quantification of p(x) is a proposition
only when p(x) is true for all values of x in the universe of discourse.

Notation: x p(x) Universal quantification of p(x)

It is also expressed as,

‘for all x p(x)’ or ‘for every x p(x)’
Example 5.1: ‘Every student in this class has studied logic’.
Solution: Let p(x) denote the statement ‘x has studied logic’,

x [s(x) p(x)]

Where s(x) is the statement ‘x is in this class’
Example 5.2: What is the truth value of x p(x), where p(x): x2< 10 and the
universe of discourse consists of the positive integers not exceeding 4!

Quantifiers

NOTES

Self-Instructional
60 Material

Solution: The statement x p(x) is the same as the conjunction. p(1) p(2)
p(3) p (4)

Since the universe of discourse consists of the integers 1, 2, 3,and 4.

p(4), in the statement ‘42 < 10’ is false, it follows x p(x) is also false.
Reason:

p(1) p(2) p(3) p(4)
T T T F = false

Existential Quantification: The existential quantification of p(x) is the
proposition ‘There exists an element x in the universe of discourse such that p(x)
is true.’

Notation: x p(x)

It is also expressed as,

‘There is an x such that p(x).’

‘There is atleast one x such that p(x)’, or for some x p(x).
Example 5.3: Let p(x) : x > 3, what is the truth value of the quantification x p(x)
where the universe of discourse is the set of real numbers.
Solution: Since x > 3 is true, for example, when x = 4 the existential quantification
of p(x) is x p(x) is true.

Example 5.4: Write the predicate ‘x is the father of the mother of y’.

Solution: Let p(x) : x is a person.

p(x, z) : x is the father of z.

m(z, y) : z is the mother of y.

We assume that the there exists a person z such that x is the father of z and
z is the mother of y.

5.3 BOUND AND FREE VARIABLES

The variable is said to be bound if it is concerned with either universal () or
existential quantifier and the scope of the variable in the formulae immediately
following the quantifier. The variable, which is not concerned with any quantifier, is
called free variable.
For example, x [p(x,y)] in the statement given above x is said to be bound and
the scope of x is upto p(x, y), while y is called free variable.

NOTES

Self-Instructional
Material 61

Quantifiers
5.4 THEORY OF INFERENCE FOR PREDICATE

CALCULUS

Consider the two statements ‘Rohit is Brilliant’ and ‘Manaswine is Brilliant’. As
propositions, there is no relation between them, but they have something in
common. Instead of writing two statements we can write a single statement like ‘x
is brilliant’, because both Rohit and Manaswine share the same nature brilliant.
By replacing x by any other name we get many propositions. The common feature
expressed by ‘Is Brilliant’ is called predicate. Predicate calculus deals with sentences
involving predicates.

A part of a declaritive sentence describing the properties of an object or
relation among objects can be referred as predicate, for example ‘Is Brilliant’.
Note: A statement of the form p(x1, x2, ...,xn) is the value of the propositional function P at the
nth tuple (x1,...,xn) and P is also called a predicate.

For example, Statements involving variables such as x > 5, x = y + 6, and x + y =
z.

These statement are neither true nor false. When the values of the variables
are not specified.

Let us consider the statement x > 5.

Here, the variable x is the subject of the statement. The second part predicate
is greater than 5 and > refers to a property that the subject of the statement can
have. Therefore, x > 5 can be written in the form p(x). The statement p(x) is also
said to be the value of the propositional function P at x. Once a value has been
assigned to the variable x, the statement can be written as p(x).

5.4.1 Statement Calculus
In logical reasoning, a certain number of propositions is assumed to be true, and
based on that assumption, some other propositions are derived.

Hypothesis: The propositions that are assumed to be true. It may also be referred
to as premises.

Conclusion: The proposition derived by using the rules of inference.

Valid Argument: The process of deriving conclusions based on the assumptions
of a premise.
Example 5.5: Some cats are black but all buffaloes are black.
Solution: C(x) : x is a cat.

B(y) : y is a buffalo.
b(x) : x is black.

Quantifiers

NOTES

Self-Instructional
62 Material

Thus, x y [C (x) b(x)] [B(y) b(y)]
Example 5.6: Sum of two positive integers is greater than either of the integers.
Solution: I (x) : x is a positive integer.

GT (x, y) : x is greater than y.
Su (x, y) : Sum of x and y.

Thus, x y yIxI [GT(Su(x, y), x] GT [Su(x, y), y]
Example 5.7: Every student in this school is either good at studies or good in
sports.
Solution: S(x) : x is a student of this school.

ST(x) : x is good at study.
SP(x) : x is good at sports.

Thus, x [S(x) (ST(x) SP(x)]
Quantitiers are distributive over the predicate and negation of universe

quantitier is existence quantifier and vice versa. This is being state below.
(i) x [A(x) B(x)] x {A(x)} x {B(x)}
(ii) x [A(x) B(x)] x [A(x)] x [B(x)]
(iii) x A(x) x A(x)
(iv) x A(x) x A(x)

Example 5.8: Give an argument which will establish the validity of the following
inference.

‘All integers are rational numbers. Some integers are power of 2. Therefore,
some rational numbers are power of 2.’
Solution: The solution is obtained as follows:

I(x) : x is an integer.
R(x) : x is a rational number.
P(x) : x is a power of 2.

Inference Pattern: x I x R x

x I x P x
x R x P x

Argument:
1. (x) I (x) P (x)] Premise
2. I(b) P (x) ES (1)
3. I (b)
4. P (b)
5. (x) [I (x) R (x)] Premise

NOTES

Self-Instructional
Material 63

Quantifiers6. I (b) R (b) US

7. R (b)

8. R (b) P (b)

9. (x) [R (x) P (x)] EG

Example 5.9: Verify the validity of the following argument:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.
Solution: H(x): x is a man.

M(x): x is a mortal.
S : Socrates.

We have to show (x) [H(x) M(x) H(s)] M(s)
Argument:
1. (x) [H(x) M(x) Premise

2. H(S) M(S) US

3. H(S) Premise

4. M (S)
Thus the inference is valid.

Example 5.10: Show that from:
(i) (x) [F(x) S(x)] y [m(y) w(y)]
(ii) y [m(y) w(y)]

The conclusion x [F(x) S(x)] follows.

1. (y) [m (y) w (y)] Premise

2. m(z) w (z) ES

3. [M (z) W (z)]

4. (y) { [m (y) w (y)]} EG

5. (y) [m (y) w (y)]

6. (x) [f (x) s (x)] y [m (y) w (y)] Premise

7. [(f (x) s(x))]

8. x (f (x) s (x))

9. [f (x) s (x)] US

10. F (x) s (x)

11. (x) [F (x) s (x)] UG

Quantifiers

NOTES

Self-Instructional
64 Material

Example 5.11: Is the following conclusion validly derivable from the premises
given?

If x [p(x) (x)] , y p(y), then z (z).
Solution:

1. (z) (z) Premise (Assumed)

2. (z) (z)

3. (y) p (y) Premise

4. p (a) ES (3)

5. (a) US (2)

6. p (a) (a)

7. [p (a) (a)]

8. (x) [p (x) (x)] Premise

9. p (a) (a) US (8)

10. [p (a) (a)] [p (a) (a)] Contradiction

5.4.2 Rule CP (Conditional Proof)
If we can derive S from R and a set of premises then we may derive R S from
set of premises alone.
Example 5.12: Derive),(SQP using the rule CP if necessary from:

)(),(SRQRQP

Solution: The solution is obtained as follows:

Step 1
In rule CP the conditional part can be taken as an additional premise,

i.e., ()P Q S

 We include P as an additional premise.

Step 2
1. P (Q R) Premise

2. P Additional Premise

{1,2}3. Q R P Q, P R

4. Q (R S) Premise

5. Q R P Q, P R

NOTES

Self-Instructional
Material 65

Quantifiers6. Q (R S)

7. Q (R, R S)

8. Q S

9. Q S

10. P (Q S) CP
Example 5.13: Show that SP can be derived from the premises.

 P Q, Q R, R S

Solution: The following is the solution,

Step 1

P is additional premise.

Step 2
1. P Q Premise

2. P Additional Premise

{1,2}3. Q

4. Q R Premise

{3,4}5. R

6. R S Premise

{5,6}7. S

8. P S CP

5.4.3 Consistent and Inconsistent
A set of formulae mSSS ,..., 21 is said to be inconsistent if their conjunction implies a
contradiction, that is, S1 S2 S Sm R R F for same formula
R.

A set of formula mSSS ,..., 21 is said to be consistent if it is not inconsistent.

Indirect Method of Proof
By using the rule of conditional proof and the notion of an inconsistent set of
premises, we introduce a method called proof by contradiction or indirect method
of proof.

Example 5.14: Prove by indirect method ,)(),(tSqrqP and .tSp

Solution: The following is the proof by indirect method.

Quantifiers

NOTES

Self-Instructional
66 Material

Step 1

7t is an additional premise.

Step 2
1. P (q r) Premise

2. (q s) t Premise

3. t Additional Premise

{1} 4. P q Premise

{1} 5. P r

{2} 6. S t Premise

{3,6}7. S Q, P Q P

8. P S Premise

{8} 9. S

10. S S = F
Example 5.15: Prove by indirect method that,

, ,E S S H A H (E A)
Solution: The following is the proof by indirect method.

Step 1

 (E A)

AE is an additional premise.

Step 2
1. E S Premise

2. S H Premise

{1, 2}3. E H

4. E H Premise

5. E A Additional Premise

{5} 6. E

{5} 7. A

{3, 6}8. E, E H = H

{4, 7}9. A, A H = H

NOTES

Self-Instructional
Material 67

Quantifiers10. H H = F
Example 5.16: Using indirect proof show that ,, rqqp rrprp),(

Solution:

Step 1

 r is an additional premise.
Step 2
1. q r Premise
2. r Premise

{1, 2}3. q p q, q q
4. p q Premise

{3, 4}5. p p q, q q
6. p r Premise

{5, 6}7. r
8. r r = f

Contradiction, hence premise.
Example 5.17: If an integer is divisible by 12 then it is divisible by 6. If an integer
is divisible by 6, then it is divisible by 3. Prove that an integer divisible by 12 is
divisible by 3.

Solution: The proof is as follows:

12

6

3

() : is divisible by 12.
() : is divisible by 6.
() : is divisible by 3.

D x x
D x x
D x x

12 6

6 3

12 3

[() ()]
[() ()]

[()]

x D x D x
x D x D x

x D x D x

1. 12 6[() ()]x D x D x Premise

2. D12 (b) D6 (b) US

3. 6 3[() ()]x D x D x Premise

4. D6 (b) D3 (b) US

{2, 4}5. D12 (b) D3 (b) P Q, Q R P R

6. 12 3[() ()]x D x D x Contusion

Quantifiers

NOTES

Self-Instructional
68 Material

Example 5.18: Prove ()[() ()], [()x P x Q x x R x ()] [()Q x x R x

()]P x .

Solution: The proof is as follows:

Step 1

Taking negated conclusion:

 (P (x))

P (x)

Step 2
1.)]()()[(xQxPx Premise

2.)(x [R (x) Q (x)] Premise

{2} 3. R (x) Q (x) US

4. R (x) Additional premise

5. Q (x) (3, 4)

6. P (x) Q (x) US

{5, 6}7. P (x) Using Q, P Q = P
8. R (x) P (x) CP

9.)(x [R (x) P (x)] UG

Check Your Progress

1. Explain the quantification.
2. Define the universe of discourse.
3. State the universal quantification.
4. Analyse the existential quantification.
5. Elaborate on the bound and free variables.
6. Interpret the theory of inference for predicate calculus.
7. Explain the consistent and inconsistent.

5.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. When all the variables in a propositional function are assigned values, the
resulting statement has a truth value. However, there is another important
way to change propositional functions into propositions, called quantification.

NOTES

Self-Instructional
Material 69

Quantifiers2. Universe of Discourse: Many mathematical statements assert that a property
is true for all values of a variable in a particular domain, called the universe
of discourse. Such a statement is expressed using an universal quantification.

3. Universal Quantification: The universal quantification of p(x) is a proposition
only when p(x) is true for all values of x in the universe of discourse.

4. Existential Quantification: The existential quantification of p(x) is the
proposition ‘There exists an element x in the universe of discourse such that
p(x) is true.’

5. The variable is said to be bound if it is concerned with either universal ()
or existential quantifier and the scope of the variable in the formulae
immediately following the quantifier. The variable, which is not concerned
with any quantifier, is called free variable.

6. Consider the two statements ‘Rohit is Brilliant’ and ‘Manaswine is Brilliant’.
As propositions, there is no relation between them, but they have something
in common. Instead of writing two statements we can write a single statement
like ‘x is brilliant’, because both Rohit and Manaswine share the same
nature brilliant. By replacing x by any other name we get many propositions.
The common feature expressed by ‘Is Brilliant’ is called predicate. Predicate
calculus deals with sentences involving predicates.

7. A set of formulae mSSS ,..., 21 is said to be inconsistent if their conjunction
implies a contradiction, that is, S1 S2 S3 ... Sm R R F for
same formula R.

A set of formula mSSS ,..., 21 is said to be consistent if it is not inconsistent.

5.6 SUMMARY

When all the variables in a propositional function are assigned values, the
resulting statement has a truth value. However, there is another important
way to change propositional functions into propositions, called quantification.
Universe of Discourse: Many mathematical statements assert that a property
is true for all values of a variable in a particular domain, called the universe
of discourse. Such a statement is expressed using an universal quantification.
Universal Quantification: The universal quantification of p(x) is a proposition
only when p(x) is true for all values of x in the universe of discourse.
Existential Quantification: The existential quantification of p(x) is the
proposition ‘There exists an element x in the universe of discourse such that
p(x) is true.’
The variable is said to be bound if it is concerned with either universal ()
or existential quantifier and the scope of the variable in the formulae

Quantifiers

NOTES

Self-Instructional
70 Material

immediately following the quantifier. The variable, which is not concerned
with any quantifier, is called free variable.

A set of formulae mSSS ,..., 21 is said to be inconsistent if their conjunction
implies a contradiction, that is, S1 S2 S3 ... Sm R R F for
same formula R.

A set of formula mSSS ,..., 21 is said to be consistent if it is not inconsistent.

5.7 KEY WORDS

Quantifiers: When all the variables in a propositional function are assigned
values, the resulting statement has a truth value. However, there is another
important way to change propositional function into propositions, called
quantification.
Universe of discourse: Many mathematical statements asset that a property
is true for all values of a variable in a particular domain, called the universe
of discourse.
Universal quantification: The universal quantification of p(x) is a
proposition only when p(x) is true for all value of x in the universe of
discourse.
Bound and free variables: The variable is said to be bound if it is concerned
with either universal () or existential () quantifiers and the scope of the
variable in the formulae immediately following the quantifier. The variable,
which is not concerned with any quantifiers, is called free variable.

5.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are quantifiers?
2. Explain the universe of discourse.
3. Define universal quantification.
4. Interpret the bound and free variables.
5. Analyse the theory of inference.
6. State the consistent and inconsistent.

Long-Answer Questions

1. Discuss briefly the quantifiers with their types.
2. Explain the universe of discourse.

NOTES

Self-Instructional
Material 71

Quantifiers3. Analyse the bound and free variables. Give appropriate examples.
4. Elaborate on the theory of inference for predicate calculus.
5. Define consistent and inconsistent.

5.9 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

Relations

NOTES

Self-Instructional
72 Material

UNIT 6 RELATIONS

Structure
6.0 Introduction
6.1 Objectives
6.2 Relations and Ordering

6.2.1 Binary Relation
6.3 Representation of a Relation
6.4 Equivalence Relations and Partition
6.5 Graphs of Relations
6.6 Properties of Relations
6.7 Answers to Check Your Progress Questions
6.8 Summary
6.9 Key Words

6.10 Self Assessment Questions and Exercises
6.11 Further Readings

6.0 INTRODUCTION

Relations concept is one of the important topic in mathematics especially in set
theory. Whenever sets are being discussed, the relationship between the elements
of the sets is the next thing that comes up. Relations may exist between objects of
the same set or between objects of two or more sets. A relation is a mathematical
tool for describing associations between elements of sets. Relations are widely
used in computer science, especially in databases and scheduling applications. A
relation can be defined across many items in many sets, but in this text, we will
focus on binary relations, which represent an association between two items in
one or two sets.

A relation can be represented using a directed graph. The number of vertices
in the graph is equal to the number of elements in the set from which the relation
has been defined. For each ordered pair (x, y) in the relation R, there will be a
directed edge from the vertex ‘x’ to vertex ‘y’. If there is an ordered pair (x, x),
there will be self- loop on vertex ‘x’. A relation in mathematics defines the
relationship between two different sets of information. If two sets are considered,
the relation between them will be established if there is a connection between the
elements of two or more non-empty sets. In the morning assembly at schools,
students are supposed to stand in a queue in ascending order of the heights of all
the students. This defines an ordered relation between the students and their heights.
Therefore, we can say, ‘A set of ordered pairs is defined as a relation.’ Sets and
relation are interconnected with each other. The relation defines the relation between
two given sets. If there are two sets available, then to check if there is any connection
between the two sets, we use relations. For example, an empty relation denotes
none of the elements in the two sets is same.

NOTES

Self-Instructional
Material 73

RelationsIn Maths, the relation is the relationship between two or more set of values.
Suppose, x and y are two sets of ordered pairs. And set x has relation with set y,
then the values of set x are called domain whereas the values of set y are called
range. There are eight main types of relations which include: Empty Relation,
Universal Relation, Identity Relation, Inverse Relation, Reflexive Relation,
Symmetric Relation, Transitive Relation, and Equivalence Relation.

An equivalence relation is a binary relation that is reflexive, symmetric and
transitive. The relation “Is Equal To” is the canonical example of an equivalence
relation.

Each equivalence relation provides a partition of the underlying set into
disjoint equivalence classes. Two elements of the given set are equivalent to each
other, if and only if they belong to the same equivalence class.

In this unit, you will study about the relations, representation of a relation,
operations on relations, and equivalence relation.

6.1 OBJECTIVES

After going through this unit, you will be able to:
Explain the relations
Analyse the representation of a relation
Interpret the operations on relations
Elaborate on the equivalence relation

6.2 RELATIONS AND ORDERING

Let A and B be any two sets. The Cartesian product of A and B is defined as,
A B = {(a, b) : a A; b B}

i.e., the set of all ordered pairs (ai , bj) for every ai A; bj B
For example, A = {1, 2}, B = {a, b, c}

A B = { (1, a), (2, a), (1, b), (2, b), (1, c), (2, c)}

B A = { (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} (Clearly A B
B A)
Note: We can represent the Cartesian product as a rectangular array having n rows and
m columns labelled in order as a1, a2,..., an and b1, b2,,bn, respectively.

6.2.1 Binary Relation
A binary relation R from a set A to a set B is a subset R of the Cartesian product
A B.

Relations

NOTES

Self-Instructional
74 Material

For example,

1. Let A = B = N, the set of natural numbers.
(i) Define the relation R as ‘=’

Now, R = { (1, 1), (2, 2), (3, 3),....} N N

R is a binary relation.

(ii) Define R as ‘<’
Then, R = { (1, 2), (2, 3), (3, 4),..... (1, 3), (2, 4), (3, 5),} N

N

R is a binary relation.
2. Let A be the set of all people on earth and a, b A, and a R b iff a and b were
born on the same day of the same year.

Domain and the Range of a Relation
Let R be a binary relation. The set D(R) of all elements x such that for all y, (x,
y) R is called the domain of R.

i.e., D (R) = { x : (x, y) R, for all y}

Similarly, Rg(R) of all elements y such that for all x, (x, y) R is called the
range of R.

i.e., Rg(R) = {y : (x, y) R, for all x}

Operations on Relations
Let R and S be relations from a set A to a set B. Now the union and intersection of
R and S is defined as,

(i) R S = { (a, b) : (a, b) R or (a, b) S}

(ii) R S = {(a,b) : (a, b) R and (a, b) S}
Example 6.1: Let X = {1, 2, 3, 4, 5, 6}

Let R and S be relations from X to X as,

R = { (x, y) : (x + y) is a multiple of 2}

S = { (x, y) : (x + y) is a multiple of 3}

Find R S and R S.
Solution: R = {(1, 3), (1, 5)} and S = {(2, 4), (1, 5)}

R S = {(1, 3), (2, 4), (1, 5)}

R S = {(1, 5)}
Inverse of R: Let R be a relation from a set A to set B. The inverse of R is relation
from B to A and is given by R–1 = {(y, x): (x, y) R}.

NOTES

Self-Instructional
Material 75

Relations
6.3 REPRESENTATION OF A RELATION

(i) A binary relation R from a set A with n elements to a set B with m elements is
represented as an n m array MRby marking the positions in MR. The positions
which correspond to the pairs belong to R with 1 and 0 elsewhere.

1if th element of is related to th element of
i.e., []

0, otherwise.R ij
i A j B

M a

Example 6.2: Let A = B = X = {1, 2, 3, 4, 5, 6}. Define R as ‘<’ on X.
Solution: R = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3,
5), (3, 6), (4, 5), (4, 6), (5, 6)}.

000000
100000
110000
111000
111100
111110

RM

(ii) The relation array can be viewed graphically as elements of sets represented
by models and an ordered pair is represented by an edge between the vertices
that correspond to the paired elements, with an arrow pointing to the second
element of the pair.

Example 6.3: Let A = {1, 2, 3, 4}, B = {1, 4, 9, 16} and the relation R = {(1, 1),
(2, 4), (3, 9), (4, 16)}. Draw the relation graph.

Solution: First we shall write the relation matrix MR.

1000
0100
0010
0001

RM

Now we shall draw the relation graph GR.

Example 6.4: Let A = {a, b, c, d}, B = {a, e, f, d}and let R = {(a, e), (a, f), (b, e),
(c, f), (b, d), (d, d), (d, a)}. Draw the relation graph.
Solution: First we shall write the relation matrix MR:

Relations

NOTES

Self-Instructional
76 Material

1001
0100
1010
0110

RM

The relation graph GR is given as

Composition of Two Relations
Let R be a binary relation from the set A to the set B and S be a binary relation from
the set B to the set C, then the ordered pair (R, S) is said to be composable. If (R, S)
is a composable pair of binary relations, the composite R O S and R and S, is a binary
relation from the set A to the set C, such that , for a A and c C, a (R O S)c if for
some b B, both aRb and bSc are binary relations.

Example 6.5: A = {1, 2, 3, 4}, B = {1, 3, 9, 10} C = {5, 6, 7, 8}, R = {(1, 1), (1, 3),
(2, 9), (2, 10), (3, 3), (4, 10)} S = {(1, 5), (3, 7), (9, 7), (10, 8)}. Find R O S and its
relation graph.

Solution:

R O S = {(1, 5), (1, 7), (2, 7), (2, 8), (3, 7), (4, 8)}

The corresponding matrix is,

1000
0100
1100
0101

SRM

and the corresponding relation graph GR S is,

NOTES

Self-Instructional
Material 77

Relations
6.4 EQUIVALENCE RELATIONS AND PARTITION

Equivalence Relation
A relation R on a set A is called an equivalence relation if R is reflexive, symmetric
and transitive.

For example,
Let N be the set of natural numbers. Define R on N as,

R = {(x,y) : x + y is even, x, y N}
Proof: Let x N. Now x + x = 2x.

 Clearly 2x is even. Therefore R is reflexive. Let x, y N and x + y is even.
 Clearly y + x is also even and hence R is symmetric.

 Now, if x + y is even and y + z is even then we have to prove that x + z is
even.

 Since, x + y and y + z are even, both (x + y) and (y + z) are divisible by
2.

 (x + y) + (y + z) is also divisible by 2, i.e., x + (y + y) + z is divisible by
2.

 (x + z) is divisible by 2.

Hence, R is transitive. So, R is an equivalence relation.
Note: From the relation graph or relation matrix, the kind of relation can be identified.

Example 6.6: The relation R on a set is represented by,

110
111
011

RM

Is R reflexive, symmetric or antisymmetric?
Solution: In the matrix MR, the diagonal elements are 1. Therefore, R is reflexive.
Since the matrix MR is symmetric, the relation R is also symmetric.

Example 6.7: The relation R and R1 on a set is represented by,

(i) MR =
1 0 0
0 1 0
0 0 1

(ii) MR1
= 111

101
111

Are the relations R and R1 reflexive, symmetric, antisymmetric, and/or
transitive ?
Solution: The solution is obtained as follows:

(i) Since, the matrix MR is symmetric and its diagonal entries are 1. The relation
R is symmetric and reflexive. Since R is not antisymmetric, R is transitive.

Relations

NOTES

Self-Instructional
78 Material

(ii) The relation R1 is not reflexive.
R1 is symmetric [MR1

is symmetric] and R1 is transitive.
Example 6.8: Draw the relation graph for the following relations.

(i) R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}on the set
X = {1, 2, 3, 4}.

(ii) R1 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}on the set Y= {1, 2, 3}.
Solution: The relation graph is draws as follows:

(i) The relation graph GR of R is drawn as:
The vertices of GR are 1, 2, 3, 4.

(ii) The relation graph GR1
of R1 is drawn as:

Example 6.9: Let R be the relation represented by:

101
011
110

RM

Find the relation matrices representing (i) R –1 (ii) Rc (iii) R2.
Solution: The solution is obtained as follows:

(i) To get the inverse relation matrix 1()
R

M of a relation matrix (MR) just write
the transpose of MR.

1

0 1 1
1 1 0
1 0 1

R
M

(ii) To find the complement relation matrix, replace 0 by 1 and 1 by 0 in the given
relation matrix.

010
100
001

cRM

NOTES

Self-Instructional
Material 79

Relations(iii) To find the relation matrix of R2 when R2 = R O R.

If the relation matrix MR is known, then .2 RR MM MR (the matrix
multiplication)

2

0 1 1 0 1 1 2 1 1
1 1 0 1 1 0 1 2 1
1 0 1 1 0 1 1 1 2

R
M

Example 6.10: Find whether the relations for the directed graphs shown in the
following figures are reflexive, symmetric, antisymmetric and/or transitive.

Solution: The solution is obtained as follows:
(i) In GR, there are loops at every vertex of the relation graph and hence it is

reflexive.
It is neither symmetric nor antisymmetric since there is an edge between 1
and 2 but not from 2 to 1, but there are edges connecting 2 and 3 in both
directions.
Moreover, the relation is not transitive, since there is an edge from 1 to 2
and 2 to 3, but no edge from 1 to 3.

(ii) Since loops are not present in GS, this relation is not reflexive. Further, it is
symmetric and not antisymmetric.
Moreover, the relation is not transitive.

Equivalence Class
Let R be an equivalence relation on a set A. Let x A. The equivalence class a is
given by,

[a]R = {x A: (a, x) R}
Note: [a]R , because a [a].

Example 6.11: Prove that any two equivalence classes are identical or disjoint.
Solution: First we shall prove that (a,b) R. This implies that [a]R = [b]R

Suppose (a, b) R
Case I: [a] = [b]

Let x [a] (x, a) R

 (x,b) R [(x,a) R and (a,b) R and R is transitive]

Relations

NOTES

Self-Instructional
80 Material

x [b]

 [a] = [b]

[a] = [b]

Now suppose [a], [b] are two equivalence classes.
Case II: [a] = [b] or [a] [b] =

If [a] [b] = then nothing to prove.

Suppose [a] [b] then x [a] [b]

x [a] and x [b]
(x, a) R and (x, b) R
[x] = [a] and [x] = [b]
[a] = [b]

[a] [b] = or [a] = [b]

i.e., any two equivalence classes are identical or disjoint.
Example 6.12: Prove that an equivalence relation induces a partition and a partition
induces an equivalence relation.
Solution: Let {Ai : i Z} is a partition of a set A. Define a relation R on A by
(a,b) R if a, b Ai for some i.
Case I: R is an equivalence relation on A.

Let, a A
a Ai for some i
a, a Ai for some i
 (a, a) R.

R is a reflexive relation on A.

Suppose (a, b) R, then by the definition of R,

a, b Ai for some i

b, a Ai for some i

 (b, a) R.

R is a symmetric relation on A.

Suppose (a, b) R and (b, c) R, then a, b Ai and b, c Aj for some i
and j.

Here, b Ai and b Aj

 Ai Aj Ai = Aj, otherwise IiiA }{ is not a partition and hence
a, b, c Ai

NOTES

Self-Instructional
Material 81

Relations (a, c) R

R is a transitive relation on A.

R is also an equivalence relation on A.

Further, we can also show that []i a AA a

Conversely, we can assume that R is an equivalence relation on set A.
Case II: R induces a partition for A.

Let, x A, [x] = {y A / (y, x) R}and for any x, y A, we have

[x] [y] = or [x] = [y]

 A = x A [x]

i.e., {[x] : x A} is a partition for A.

Check Your Progress

1. What do you understand by the relations?
2. Explain the binary relation.
3. Define the domain and the range of a relation.
4. Interpret the operations on relations.
5. Elaborate on the representation of a relation.
6. Analyse the composition of two relations.
7. State the equivalence relation.
8. Define the equivalence class.

6.5 GRAPHS OF RELATIONS

We know that a relation is a subset of Cartesian product of two sets. A relation
shows relationship of a member of one set to that of another set. Thus, a relationship
is shown as an ordered pair and is also called binary relation. If we recall the basic
concept of a coordinate plane, also called Cartesian plane, we know that it is
constituted by choosing two number lines, intersecting at right angles to each other.
One line is horizontal, usually called x-axis and another as y-axis. The intersecting
point of these two lines is the origin. When only one number line is used, every
point on this number line represents a real number. But when we take two lines at
right angles to each other it represents a point in the plain containing an ordered
pair. Thus, every point on this plane shows a relation. Thus, relationship can be
shown as graphs. A domain with a binary relation can be viewed as vertices with
edges connecting them. Thus, any binary relation can be shown as graph, by

Relations

NOTES

Self-Instructional
82 Material

taking domain elements as vertices and showing them as dots, with arrows as
edges between related elements. Vertices can also represent tasks and edges
connecting those showing dependencies.
We can make a graph of any relation. For example, we draw the graph of the
relation,
R = {(2, 5), (4, 3), (6, 1), (2, 7)}. The graph is shown in Figure 6.1.

Fig. 6.1 Graph Showing Relation

R = {(2, 5), (4, 3), (6, 1), (2, 7)}
A function is also a relation although, all relations are not functions. So, we can call
any function a relation too. We now draw the graph of the relation 2x + 3y = 6.
We must have at least two points. If x = 0, y = 2 and if y = 0, x = 3. Thus, graph
can be sketched by taking points (0, 2) and (3, 0) and connecting these points to
find a straight line. The graph has been plotted in the Figure 6.2.

Fig. 6.2 Graph of Relation 2x + 3y = 6

NOTES

Self-Instructional
Material 83

RelationsExample 6.13: Draw the graph of the relation x2 + y2 = 25.
Solution: To sketch the graph we find different points by arbitrarily taking values
of x and finding corresponding values of y. Points are: (5, 0), (4, 3), (3, 4), (0, 5),
(–3, 4), (–4, 3), (–5, 0), (–4, –3), (–3,–4), (0,–5), (3,–4), (4,–3). We plot this
line on the plane and join these.

Example 6.14: Draw the graph of relation 16x2+9y2 = 144 and find the intercepts
on axes.
Solution: By equating y = 0, we get x-intercepts and by putting y = 0, we get y-
intercepts. We note different values of y corresponding to some values of x and
draw a curve. This shows an ellipse. The x-intercepts are (3, 0) and (–3, 0). The
y-intercepts are (4, 0) and (–4, 0). The curve is shown below.

Relations

NOTES

Self-Instructional
84 Material

6.6 PROPERTIES OF RELATIONS

We have already known what binary relations are. A binary relation has certain
properties which apply only to relations on Cartesian product of a single set, i.e.,
in A A.

Properties of a Binary Relation

Let R be a relation on a set A (i.e., R A × A). R is called:
(i) Reflexive: If aRa, a A

(ii) Symmetric: If aRb then bRa, a,b A
(iii) Transitive: If aRb and bRc then aRc, a,b,c A
(iv) Irreflexive: If a Ra, and a A
(v) Antisymmetric: If aRb then b Ra, and a = b for a, b A
(vi) Connected: A relation R in A is connected iff for every two distinct elements

x and y in A, such that (x,y) R or (y, x) R (or both).
Also, based on these properties, such as reflexivity, symmetricity, transitivity, etc.
in combination defines certain classes of relations such as equivalence, tolerance
or ordering. Examples of relations that are reflexive are ‘=’ and ‘“’ on the set N of
natural numbers and relations ‘ ’ and ‘ ’ between sets are reflexive. Relations
‘>’ and ‘<’ on N are irreflexive.

Example of the symmetric relation is the relation ‘brother of’. It is symmetric,
but not in all cases. It is nonsymmetrical when the set comprises all people. Let us
consider a set A = {John, Peter, Bill}. If John is brother of Bill then Bill is also
brother of John. So it is symmetric. But if set contains a female named Mary, then
it is not symmetric. It is asymmetric. If John is brother of Mary, Mary is not the
brother of John. Examples of transitivity relations are =, > and < are transitive in
the set of natural numbers.
Partitions: In a non-empty set A, a partition of A is a collection of non-empty
subsets of A such that (i) for any two distinct subsets X and Y, X Y = and (ii)
the union of all the subsets in collection equals A. The subsets of A that are members
of a partition of A are called cells of that partition. There is a close correspondence
between partitions and equivalence relations. Given a partition of set A, the relation
R = {(x,y): x and y are in the same cell of the partition of A} is an equivalence
relation in A. Conversely, given an equivalence relation R in A, there exists a partition
of A in which x and y are in the same cell iff (x,y) R.
Tolerance: A relation R in A × A is called a tolerance or a tolerance relation if
it is reflexive and symmetric. Thus, tolerance is weaker than equivalence and it
need not to be transitive. The notion of tolerance relation is an explication of
similarity or closeness. Relations ‘neighbour of’, ‘friend of’ can be considered

NOTES

Self-Instructional
Material 85

Relationsas examples if we hold that every person is a neighbour and a friend to him(her)
self.

Analogous to equivalence classes and partitions, there are tolerance classes
and coverings. A set B A is called a tolerance preclass if it holds that for all x,
y B, x and y are tolerant, i.e., (x,y) R.

Orderings

An order is a binary relation which is essentially transitive and further it can either
be (i) reflexive and antisymmetric or (ii) irreflexive and asymmetric.
For examples, relations and = on the set N of natural numbers are examples of
weak order, as are relations and = on subsets of any set. The relations > and
are examples of strict orders on the corresponding sets. The relations and > are
linear orders. Partial ordering sets and well ordered sets also show ordering
properties.

Check Your Progress

9. Explain the graphs of a relations.
10. Describe the properties of a binary relation.
11. What do you mean by the tolerance relation?
12. Define the orderings.

6.7 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Let A and B be any two sets. The Cartesian product of A and B is defined as,
A B = {(a, b) : a A; b B}

i.e., the set of all ordered pairs (ai , bj) for every ai A; bj B
2. A binary relation R from a set A to a set B is a subset R of the Cartesian

product A × B.
For example,
Let A = B = N, the set of natural numbers.

3. Let R be a binary relation. The set D(R) of all elements x such that for all y,
(x, y) R is called the domain of R.
i.e., D (R) = { x : (x, y) R, for all y}
Similarly, Rg(R) of all elements y such that for all x, (x, y) R is called the
range of R.
i.e., Rg(R) = {y : (x, y) R, for all x}

Relations

NOTES

Self-Instructional
86 Material

4. Let R and S be relations from a set A to a set B. Now the union and intersection
of R and S is defined as,
(i) R S = { (a, b) : (a, b) R or (a, b) S}
(ii) R S = {(a,b) : (a, b) R and (a, b) S}

5. A binary relation R from a set A with n elements to a set B with m elements
is represented as an n × m array MR by marking the positions in MR. The
positions which correspond to the pairs belong to R with 1 and 0 elsewhere.

1if th element of is related to th element of
i.e., []

0, otherwise.R ij
i A j B

M a

6. Let R be a binary relation from the set A to the set B and S be a binary
relation from the set B to the set C, then the ordered pair (R, S) is said to be
composable. If (R, S) is a composable pair of binary relations, the composite
R O S and R and S, is a binary relation from the set A to the set C, such that,
for a A and c C, a (R O S)c if for some b B, both aRb and bSc are
binary relations.

7. A relation R on a set A is called an equivalence relation if R is reflexive,
symmetric and transitive.

8. Let R be an equivalence relation on a set A. Let x A. The equivalence
class a is given by,

[a]R = {x A: (a, x) R}
Note: [a]R , because a [a].

9. A relation shows relationship of a member of one set to that of another set.
Thus, a relationship is shown as an ordered pair and is also called binary
relation. If we recall the basic concept of a coordinate plane, also called
Cartesian plane, we know that it is constituted by choosing two number
lines, intersecting at right angles to each other.

10. Let R be a relation on a set A (i.e., R A × A). R is called:
(i) Reflexive: If aRa, a A
(ii) Symmetric: If aRb then bRa, a,b A
(iii) Transitive: If aRb and bRc then aRc, a,b,c A
(iv) Irreflexive: If a Ra, and a A
(v) Antisymmetric: If aRb then b Ra, and a = b for a, b A
(vi) Connected: A relation R in A is connected iff for every two distinct

elements x and y in A, such that (x,y) R or (y, x) R (or both).
11. Tolerance: A relation R in A × A is called a tolerance or a tolerance relation

if it is reflexive and symmetric. Thus, tolerance is weaker than equivalence

NOTES

Self-Instructional
Material 87

Relationsand it need not to be transitive. The notion of tolerance relation is an
explication of similarity or closeness.

12. An order is a binary relation which is essentially transitive and further it can
either be (i) reflexive and antisymmetric or (ii) irreflexive and asymmetric.

6.8 SUMMARY

Let A and B be any two sets. The Cartesian product of A and B is defined as,
A B = {(a, b) : a A; b B}

i.e., the set of all ordered pairs (ai , bj) for every ai A; bj B
A binary relation R from a set A to a set B is a subset R of the Cartesian
product A × B.
For example,
Let A = B = N, the set of natural numbers.
Let R be a binary relation. The set D(R) of all elements x such that for all y,
(x, y) R is called the domain of R.
i.e., D (R) = { x : (x, y) R, for all y}
Similarly, Rg(R) of all elements y such that for all x, (x, y) R is called the
range of R.
i.e., Rg(R) = {y : (x, y) R, for all x}
Let R and S be relations from a set A to a set B. Now the union and intersection
of R and S is defined as,
(i) R S = { (a, b) : (a, b) R or (a, b) S}
(ii) R S = {(a,b) : (a, b) R and (a, b) S}
A binary relation R from a set A with n elements to a set B with m elements
is represented as an n × m array MR by marking the positions in MR. The
positions which correspond to the pairs belong to R with 1 and 0 elsewhere.

1if th element of is related to th element of
i.e., []

0, otherwise.R ij
i A j B

M a

Let R be a binary relation from the set A to the set B and S be a binary
relation from the set B to the set C, then the ordered pair (R, S) is said to be
composable. If (R, S) is a composable pair of binary relations, the composite
R O S and R and S, is a binary relation from the set A to the set C, such that,
for a A and c C, a (R O S)c if for some b B, both aRb and bSc are
binary relations.

Relations

NOTES

Self-Instructional
88 Material

A relation R on a set A is called an equivalence relation if R is reflexive,
symmetric and transitive.
Let R be an equivalence relation on a set A. Let x A. The equivalence
class a is given by,

[a]R = {x A: (a, x) R}
Note: [a]R , because a [a].

A relation shows relationship of a member of one set to that of another set.
Thus, a relationship is shown as an ordered pair and is also called binary
relation. If we recall the basic concept of a coordinate plane, also called
Cartesian plane, we know that it is constituted by choosing two number
lines, intersecting at right angles to each other.
Tolerance: A relation R in A × A is called a tolerance or a tolerance relation
if it is reflexive and symmetric. Thus, tolerance is weaker than equivalence
and it need not to be transitive. The notion of tolerance relation is an
explication of similarity or closeness.
An order is a binary relation which is essentially transitive and further it can
either be (i) reflexive and antisymmetric or (ii) irreflexive and asymmetric.

6.9 KEY WORDS

Binary relation: A binary relation R from a set A to a set B is a subset R of
the Cartesian product A × B.
Domain: Let R be a binary relation. The set D(R) of all elements x such
that for all y, (x,y) R is called the domain of R.
Range: Rg(R) of all elements y such that for all x, (x,y) R is called the
range of R.
Representation of a relation: A binary relation R from a set A with n
elements is represented as an n × m array MR by marking the positions in
MR.
Equivalence relation: A relation R on a set A is called an equivalence
relation if R is reflective, symmetric, and transitive.
Equivalence class: Let R be an equivalence relation on a set A. Let x A.
The equivalence class a is given by,

[a]R = {x A: (a,x) R}
Tolerance: A relation R in A × A is called a tolerance or a tolerance relation
if it is reflexive and symmetric.

NOTES

Self-Instructional
Material 89

Relations
6.10 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1. Explain the binary relation.
2. Define the domain and range of a relation.
3. Interpret the operations on the relations.
4. Elaborate on the representation of a relation.
5. Analyse the composition of two relations.
6. State the equivalence relation.
7. Explain the equivalence class.
8. Illustrate the properties of relations.
9. Define the tolerance relation.

10. What do you understand by the orderings of relation?

Long-Answer Questions

1. Discuss briefly the binary relation. Give appropriate examples.
2. Define the domain and range of a relation.
3. Analyse the representation of a relation.
4. Illustrate the composition of two relations.
5. Describe the equivalence relation with the help of example.
6. Elaborate on the graphs of relations.
7. Explain the properties of relations.
8. State the relation if any, between sets A and B in the following:

(i) A = {1, 3, 5, 7, 9, . . . }
B = {3, 9, 15, 21, , 3(2n – 1), . . .}

(ii) A = { 2, 4, 7, 12, 18, 24}
B = { 1, 3, 7, 11, 16, 22, 29}

(iii) A = {x : x is an even natural number less than 20}
B = {x : x is natural number less than 20 which is divisible by 2}

(iv) A = {x : x is an even integer}
B = {x : x is an integer divisible by 3}

6.11 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Relations

NOTES

Self-Instructional
90 Material

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 91

Lattices

UNIT 7 LATTICES

Structure
7.0 Introduction
7.1 Objectives
7.2 Lattice

7.2.1 Properties of Lattice
7.2.2 New Lattice
7.2.3 Distributive Lattice
7.2.4 Sublattice

7.3 Boolean Algebra
7.4 Boolean Polynomials

7.4.1 Precedence of Operators
7.4.2 Truth Table
7.4.3 Complement of Functions
7.4.4 Standard Forms
7.4.5 Minterm and Maxterm
7.4.6 Canonical Form: Sum of Minterms
7.4.7 Canonical Form: Product of Maxterms
7.4.8 Conversion of Canonical Forms
7.4.9 Boolen Algebra as Lattices

7.4.10 Atom
7.5 Answers to Check Your Progress Questions
7.6 Summary
7.7 Key Words
7.8 Self Assessment Questions and Exercises
7.9 Further Readings

7.0 INTRODUCTION

A lattice is an abstract structure studied in the mathematical subdisciplines of order
theory and abstract algebra. It consists of a partially ordered set in which every
two elements have a unique supremum (also called a least upper bound or join)
and a unique infimum (also called a greatest lower bound or meet). An example is
given by the natural numbers, partially ordered by divisibility, for which the unique
supremum is the least common multiple and the unique infimum is the greatest
common divisor.

Lattices can also be characterized as algebraic structures satisfying certain
axiomatic identities. Since the two definitions are equivalent, lattice theory draws
on both order theory and universal algebra. Semilattices include lattices, which in
turn include Heyting and Boolean algebras. These “Lattice-Like” structures all
admit order-theoretic as well as algebraic descriptions.

If (L,) is a partially ordered set (poset), and S L is an arbitrary subset,
then an element u L is said to be an upper bound of S if s u for each s S. A

Lattices

NOTES

Self-Instructional
92 Material

set may have many upper bounds, or none at all. An upper bound u of S is said to
be its least upper bound, or join, or supremum, if u x for each upper bound x of
S. A set need not have a least upper bound, but it cannot have more than one.
Dually, l L is said to be a lower bound of S if l s for each s S. A lower bound
l of S is said to be its greatest lower bound, or meet, or infimum, if x l for each
lower bound x of S. A set may have many lower bounds, or none at all, but can
have at most one greatest lower bound.

A lattice is modular if and only if it doesn’t have a sublattice isomorphic to.
Besides distributive lattices, examples of modular lattices are the lattice of two-
sided ideals of a ring, the lattice of submodules of a module, and the lattice of
normal subgroups of a group. The set of first-order terms with the ordering “Is
More Specific Than” is a non-modular lattice used in automated reasoning.

Boolean algebra is the branch of algebra in which the values of the variables
are the truth values true and false, usually denoted 1 and 0, respectively. Instead
of elementary algebra, where the values of the variables are numbers and the
prime operations are addition and multiplication, the main operations of Boolean
algebra are the conjunction (AND) denoted as , the disjunction (OR) denoted
as , and the negation (NOT) denoted as . It is thus a formalism for describing
logical operations, in the same way that elementary algebra describes numerical
operations.

In this unit, you will study about the lattice, some properties of lattices, new
lattices, modular and distributive lattices, Boolean algebra, and Boolean
polynomials.

7.1 OBJECTIVES

After going through this unit, you will be able to:
Understand the lattices
Explain some properties of lattices and new lattices
Illustrate the modular and distributive lattices
Interpret the Boolean algebra
Comprehend the Boolean polynomials

7.2 LATTICE

Lattice: A poset in which every pair of elements have both a least upper bound
and a greatest lower bound is called a lattice.
For example,

(i) The poset ({1, 2, 4, 8},1) is a lattice.
(ii) The poset (P(S),) is a lattice.

NOTES

Self-Instructional
Material 93

LatticesHere A B = Least upper bound (LUB) of A and B and A B = Greatest
lower bound (GLB) of A and B, for any A S, B S.

7.2.1 Properties of Lattice
A lattice is a partially ordered set (L,) in which every pair of elements a, b L
has a Greatest Lower Bound (GLB) and a Least Upper Bound (LUB).

The Greatest Lower Bound (GLB) of a subset {a, b} L will be denoted
by a b and the Least Upper Bound (LUB) by a b. So GLB {a, b} = a b,
called the meet of a and b and LUB {a, b} = a b, called the join of a and b.

Note that and are binary operations and we denote the lattice by
(,). From the definition of and , the following is denoted:

(i) a a b; b a b (i.e., a b is an UB of a and b).
(ii) a b a; a b b (i.e., a b is a LB of a and b).
(iii) If a c and b c then a b c (i.e., a b is the LUB of a and b).
(iv) If c a and c b then c a b. (i.e., a b is the GLB of a and b).

For example, the following are Lattices:

For example, the following are Posets but not Lattices:

For example, let A be any set and L = P (A) be its power set. The poset (L,) is
a lattice in which for any x, y, L, x y = x y and x y = x y..
Similarly let I be the set of positive integers. For any x, y I, x y if x/y. Define x

y = LCM (x, y) and x y = GCD (x, y). Then (I, ,) is a lattice.

Theorem 7.1: Let (L,) be a lattice in which and denote the operations of
meet and join respectively. For any a, b, c L, we have

(i) a a = a ; a a = a (Idempotent)
(ii) a b = b a; a b = b a (Commutative)
(iii) (a b) c = a (b c); (a b) c = a (b c) (Associative)
(iv)a (a b) = a; a (a b) = a (Absorption)

Lattices

NOTES

Self-Instructional
94 Material

Proof: Following are the proof of above mentioned statements:

(i) Since a a, we know that a is a lower bound of {a, a} = {a}. If b is also
a lower bound and if a b then we have b a and a b. By antisymmetry,,
a = b. So a is the GLB of {a}. Therefore, a a = a. Dually, a a = a
follows.

(ii) Let x = a b = GLB {a, b}. Since {a, b} = {b, a}, GLB {b, a} = x. So
b a = x. Hence x = a b = b a. Dually, a b = b a follows.

(iii)Let x = a (b c) and y = (a b) c.
Now x = a (b c) x a, x b c

x a, x b, x c
x a b, x c
x (a b) c = y.

Similarly, y x follows. By antisymmetry, x = y and hence,
a (b c) = (a b) c.
Dually, a (b c) = (a b) c follows.

(iv)By definition, for any a L, a a and a a b
Therefore, a a (a b). But a (a b) a. Hence a (a b) = a.
Dually, a (a b) = a follows.

Theorem 7.2: Let (L,) be a lattice in which and denote the operations of
meet and join, respectively. For any a, b L,

a b a b = a
a b = b

Proof: Assume that a a. Since a b, it follows that a a b. But by definition
of , a b a. Therefore a b = a. Conversely, suppose a b = a. Then a
b. Hence a b a b = a. Similarly a b a b = b follows.

Isotonicity law
Theorem 7.3: Let (L,) be a lattice in which and denote the operations of
meet and join, respectively. For any a, b, c, L,

b c caba
caba

Proof: Assume that b c. Since a b b, by transitivity, , a b c. Since a b
a, it follows that,

a b a c

Now, b c and c a c implies b a c. But a a c. Hence a b
a c.
Note: For any a, b, c L, by Isotonicity law,,

a b a c a b c

NOTES

Self-Instructional
Material 95

Latticesa b a c a b c

c b a a b c a

c b a a b c a.

Distributive Inequality
Theorem 7.4: Let (L,) be a lattice. For any a, b, c, L, the following inequalities
are hold.

(i) a (b c) (a b) (a c)
(ii) (a b) (a c) a (b c)
Since a a b and a a c, we have,

a (a b) (a c) ... (7.1)
Since b c b a b and b c c a c,

b c (a b) (a c) ... (7.2)
From Equations (7.1) and (7.2) we have,
a (b c) (a b) (a c).
Similarly, Case (ii) follows.

Modular Inequality
Theorem 7.5: Let (L,) be a lattice. For any a, b, c L,

a c a (b c) (a b) c
Proof: Suppose a c. Then a c = c.

By distributive inequality, a (b c) (a b) (a c)

Since a c = c,
a (b c) (a b) c.

Conversely, let us assume that a (b c) (a b) c.

Since,

c
cba

cbaa
)(

)(

We get a c. Hence proved.
Example 7.1: Prove that in a lattice (L,), for any a, b, c L, if a b c a b
= bc, and (a b) (b c) = b = (a b) (a c).
Solution: Since a b and a c, a b c. Again b b and b c implies b b c.

Now a b c and b b c a b b c ... (1)

Again, b c b a b ... (2)

From Equations (1) and (2), a b = b c.

Lattices

NOTES

Self-Instructional
96 Material

Hence, a b b and b c b, we get (a b) (b c) b. Since b c and
b b implies b b c. Again this implies b (b c) (a b). Hence, (a b)
(b c) = b. Similarly, (a b) (a c) = b follows.
Example 7.2: Prove that in a lattice (L,), for any a, b, c, d, L, if a b and c d
then a c b d.
Solution: Since a c a b and a c c d, a c b d.

7.2.2 New Lattice

A lattice is defined as an abstract structure which is typically studied in the
mathematical subdisciplines of order theory and abstract algebra. It consists of
a partially ordered set (poset) in which every two elements have a unique
supremum, also termed as Least Upper Bound (LUB) or join, and a unique
infimum, also termed as Greatest Lower Bound (GUB) or meet.

A new lattice means creation of a lattice as a special kind of an ordered
set with two binary operations.
Definition: A lattice is a partially ordered set (L,) in which every subset {a, b}
consisting of two elements has a least upper bound and a greatest lower bound.

The LUB ({a, b}) is denoted by a b and is termed as join or sum of a and
b. In the same way, GLB ({a, b}) is denoted by a b and is termed as meet or
product of a and b.

Consequently, ‘Lattice’ is a mathematical structure with two binary
operations, join and meet. A totally ordered set is evidently a lattice but not all
partially ordered sets are lattices.

We generate new propositions from existing ones by means of well-formed
formulations.

7.2.3 Distributive Lattice
A Lattice (L,) is said to be distributive lattice if for any a, b, c, L,

a (b c) = (a b) (a c)

a (b c) = (a b) (a c).
Theorem 7.6: Let a, b, c L, where (L,) is a distributive lattice. Then a b =
a c and a b = a c b = c.
Proof: We know that,

 b = b (b a) (Absorption)

= b (a b) (Commutative)

= b (a c) (a b = a c)

= (b a) (b c) (Distributive)

= (a b) (c b) (Commutative)

NOTES

Self-Instructional
Material 97

Lattices= (a c) (c b) (a b = a c)

= (c a) (c b) (Commutative)

= c (a b) (Distributive)

= c (a c) (a b = a c)

= c (c a) (Commutative)

= c (Absorption)

Hence proved.
Modular Lattice: A Lattice (L,) is said to be modular lattice if

a c a (b c) = (a b) c.

Bounded Lattice: A Lattice (L,) which has both, a least element denoted by 0,
and the greatest element denoted by 1 is called a bounded lattice.

Note: If L = {a1,a2,...,an} with 0
1 i

n

i
a and .1

1 i

n

i
a It satisfies a 0 = a, a 1 =

1, a 1 = a and a 0 = 0.

Complement of an Element: In a bounded Lattices (L,), an element b L is
called a complement of an element a L if a b = 0 and a b = 1, we denote b
by a.

Complement Lattice: A Lattice (L,) is said to be complemented lattice if every
element of L has at least one complement.

Example 7.3: Show that De Morgan’s laws hold in a complemented distributive
lattice.
Solution: To process that baba)(and),()(baba consider

() () () () (Distributive)
() ((Commutative)

() () (Associative)
(0) (0)
0 0 0

a b a b a b a a b b

b a a a b b

b a a a b b
b a

Again,

() () (() (Distributive)
() () (Commutative)

() () (Associative)
(1) (1)
1 1 1

a b a b a a b b a b

a a b b b a

a a b b b a
b a

Lattices

NOTES

Self-Instructional
98 Material

Hence, ba is the complement of (a b). So)(baba . Similarly,,
baba)(follows.

Example 7.4: Show that in a complemented lattice (L,),
abbababa 01

Solution: Consider a b a b = a

1
1)(1

1)()(
1)(

ba
ba

baaa
baaaa

Again, a b a b = b

.0
00)(

1)()(
0)(

ba
ba

bbba
bbabb

To prove the last one,

()

(Commutative)
.

a b a b b
a b b

a b b
a a b
b a

Example 7.5: Consider the lattice L = {1, 2, 3, 4, 6, 12}, the divisions of 12
ordered by divisibility. Find the following:

(i) The lower bound and upper bound of L
(ii) The complement of 4.
(iii) Is L a complemented lattice?

Solution: The solution is obtained as follows:
(i) The lower bound of L is 1and the upper bound is 12.
(ii) Since 4 3 = gcd (4,3) = 1 and

4 3 = lcm (4,3) = 12, then the complement of 4 is 3.
(iii)Since 6 x = gcd (6, x)

1 for x 1 and 6 1 = lcm (6,1)
12, 6 has no complement and hence L is not a complemented lattice.

7.2.4 Sublattice
Let M be a non-empty subset of a Lattice (L,). We say that M is a sublattice of
L if M itself is a lattice with respect to the operations of L.
Note: So M is a sublattice of L if and only if M is closed under the operations and
of L.

NOTES

Self-Instructional
Material 99

LatticesExample 7.6: Consider the following lattice L.

Determine whether each of the following is a sublattice of L.
M = {a, b, c, g}

N = {a, b, f, g}

O = {b, d, e, g}

P = {a, d, e, g}
Solution: Since b c = d, and d M, M is not a sublattice. Since d e = b and
b p, p is not a sublattice. But N and O are sublattices.

Example 7.7: Suppose M is a sublattice of a distributive lattice L. Show that M is
a distributive lattice.

Solution: For a distributive lattice L, a (b c) = (a b) (a c) and a
(b c) = (a b) (a c) for all a, b, c L. Since M is closed, each element of
M is also in L, the distributive laws hold for all elements in M. Hence M is a
distributive lattice.

Example 7.8: Prove that in a distributive lattice (L,), if an element has a
complement then this complement is unique.
Solution: Suppose for any a L has two complements say b and c in L. Then a
b = 1; a b = 0 and v a c = 1; a c = 0.

Consider 1 ()
() () (Distributive)
0 () () ()
() (Distributive)
1

b b b a c
b a b c

b c a c b c
a b c

c c

7.3 BOOLEAN ALGEBRA

Boolean algebra is named after George Boole, who used it to study human logical
reasoning. For example, any event can be true or false. Similarly, connectives can
be of any of the following three basic forms:

Lattices

NOTES

Self-Instructional
100 Material

1. a OR b
2. a AND b
3. NOT a

Boolean algebra consists of a set of elements B, with two binary operations {+}
and {.} and a unary operation { }, such that the following axioms hold:

The set B contains at least two distinct elements x and y.
Closure: For every x, y in B,
n x + y
n x . y
Commutative laws: For every x, y in B,
n x + y = y + x
n x . y = y . x
Associative laws: For every x, y, z in B,
n (x + y) + z = x + (y + z) = x + y + z
n (x . y) . z = x .(y . z) = x . y . z
Identities (0 and 1):
n 0 + x = x + 0 = x for every x in B
n 1 . x = x . 1 = x for every x in B
Distributive laws: For every x, y, z in B,
n x . (y + z) = (x . y) + (x . z)
n x + (y . z) = (x + y) . (x + z)
Complement: For every x in B, there exists an element x in B such that,
n x + x = 1
n x . x = 0

Duality Principle: Every valid Boolean expression (equality) remains valid if the
operators and identity elements are interchanged.

+ .
1 0

For example, given the expression,
a + (b .c) = (a + b). (a + c)

Its dual expression is:
a. (b + c) = (a. b) + (a. c)

The advantage of this theorem is that if you prove one theorem, the other
follows automatically.
For example, if (x + y + z) = x . y. z is valid, then its dual is also valid:

(x. y. z) = x + y + z

NOTES

Self-Instructional
Material 101

LatticesApart from the axioms/postulates, there are other useful theorems. These
entire theorems are useful for reducing the expression.

1. Idempotency
(a) x + x = x

(b) x . x = x
Proof of (a):

x + x = (x + x).1 (Identity)
= (x + x). (x + x) (Complement)
= x + x. x (Distributive)
= x + 0 (Complement)
= x (Identity)

2. Null elements for ‘+’ and ‘.’ operators
(a) x + 1 = 1

(b) x . 0 = 0
3. Involution

(x) = x
4. Absorption

(a) x + x . y = x
(b) x . (x + y) = x

5. Absorption (variant)
(a) x + x . y = x + y

(b) x . (x + y) = x. y
6. De Morgan

(a) (x + y) = x . y
(b) (x . y) = x + y

7. Consensus
(a) x. y + x . z + y. z = x . y + x . z
(b) (x + y) . (x + z) . (y + z) = (x + y) . (x + z)

The set B = {0, 1} and the logical operations OR, AND and NOT satisfy all the
axioms of Boolean algebra.
A Boolean expression is an algebraic statement containing Boolean variables
and operators. Theorems can be proved using the truth table method. They can
also be proved by an algebraic manipulation using axioms/postulates or other
basic theorems.

7.4 BOOLEAN POLYNOMIALS

A Boolean function is an expression formed with binary variables, the two binary
operators OR and AND, the unary operator NOT, and the equal and parenthesis

Lattices

NOTES

Self-Instructional
102 Material

signs. Its result is also a binary value. The general usage is ‘.’ for AND, ‘+’ for OR
and ‘ ’ for NOT.

7.4.1 Precedence of Operators

To lessen the brackets used in writing Boolean expressions, operator precedence
can be used. Precedence (highest to lowest): . +
For example,

a .b + c = (a. b) + c
b + c = (b) + c

a + b . c = a + ((b). c)
In order to avoid confusion, use brackets to overwrite precedence.

7.4.2 Truth Table

A truth table is a table, which consists of every possible combination of inputs and
its corresponding outputs.

IN PU TS O U TPU TS
… …
… …

For basic logic gates, the truth table is already being discussed. Now, for
the complex digital systems, it is very important to derive the truth table.

A truth table describes the behaviour of a system that is to be designed.
This is the starting point for any digital system design. A designer must formulate
the truth table first. It is the responsibility of the designer to decide the number of
output bits to represent the behaviour of the system.

For example, if you have to design a 2-bit multiplier, which multiplies two
inputs A and B, each of the two bits, then it should be noted that the output must
be at least of 4 bits since the maximum result that you can have from this
multiplication is 1001(9) corresponding to the maximum value of both the inputs,
i.e., 11(3). The block diagram and the truth table are shown as follows:

 Fig. 7.1 2-Bit Multiplier Block Diagram

In the truth table formation, inputs are taken as A1A0 for A input and B1B0 for B
input. Output resulting from multiplication is to be represented as P3P2P1P0, where
P3 is the MSB and P0 is the LSB bit. If A = 10, i.e., 2 and B = 11, i.e., 3, then the
result of multiplication will be 0110, i.e., 6. So, the bits at the output will be P3 = 0,
P2 = 1, P1 = 1, P0 = 0. The complete truth table for the multiplier will be as shown
in Table 7.1.

NOTES

Self-Instructional
Material 103

Lattices Table 7.1 Truth Table for 2-Bit Multiplier
A1 B0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

After the truth table, you have to write the Boolean expression for the output
bit and then realize the reduced expression using logic gates.

Whenever a Boolean expression for any output signal is to be written from
the truth table, only those input combinations for which the output is high is to be
written. As an example, let us write the Boolean expression for Table 7.2.

 Table 7.2 Truth Table

x y z F1 F2 F3 F4
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 0

The Boolean expression for the output F1 will be F1 = x. y. z . This is in the
Sum-of-Products form, which will be discussed later.

As can be seen from Table 7.2, output F1 is 1 only when input xyz is 110.
This is represented as x. y. z . Similarly, you can write the output expression for
the rest of the output signals.

F2 = x . y . z + x .y . z + x. y . z + x. y. z + x.
y. z

F2 can be reduced using Boolean algebra and can be written as follows:
F2 = x . y . z + x .y . (z + z) + x. y. (z + z)

= x . y . z + x .y + x. y
= x . y . z + x .(y + y)

Lattices

NOTES

Self-Instructional
104 Material

= x . y . z + x
= (x + x). (y . z + x) (Using Absorption rule)
= 1. (y . z + x)
= (y . z + x)

Similarly, it can be shown that F3 = F4 = x. y + x . z

7.4.3 Complement of Functions

For a function F, the complement of this function F is obtained by interchanging
1 with 0 and vice versa in the function’s output values. As an example, take the
following function F1 and its complement, F :

 Table 7.3 Truth Table of Function and its Complement

x y z F1 F1
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0
1 1 1 0 1

The same can also be verified using the Boolean algebra technique. In Table 7.3,
if F1 = xyz , then its complement will be:

F1' = (x. y. z) .
= x + y + (z) (Using De Morgan's theorem)
= x + y + z

This is the same as that obtained from the truth table by algebraic manipulation,
which is given as follows:

F1 = x .y .z + x .y .z + x .y.z + x .y.z + x.y .z + x.y .z + x.y.z
= x .y .(z + z) + x .y.(z + z) + x.y .(z + z) + x.y.z
= x .y + x .y + x.y + x.y.z
= x .(y + y) + x.(y + y.z)
= x + x.(y + y.z)
= x + x(y + y). (y + z)
= x + x. (y + z)
= (x + x).(x + y + z)
= (x + y + z)

NOTES

Self-Instructional
Material 105

LatticesThe following are some more general forms of De Morgan’s theorems used for
obtaining complement functions:

(A + B + C + ... + Z) = A . B .C … . Z
(A. B. C... .Z) = A + B + C + … + Z

7.4.4 Standard Forms

Certain types of Boolean expressions lead to gating networks, which are desirable
from the implementation point of view. The following are two standard forms for
writing a Boolean expression:

Sum-Of-Product (SOP)
Product-Of-Sum (POS)

Before using SOP and POS forms, you must know the following terms:
Literal: A variable on its own or in its complemented form is known as a
literal.
Examples: x, x , y, y
Product Term: It is a single literal or a logical product (AND) of several
literals.
Examples: x, x.y.z , A .B, A.B
Sum Term: It is a single literal or a logical sum (OR) of several literals.
Examples: x, x +y + z , A +B, A+B
Sum-Of-Products (SOP) Expression: It is a product term or a logical
sum (OR) of several product terms.
Examples: x, x + y. z , x .y + x . y. z , A.B+A .B
Product-Of-Sum (POS) Expression: It is a sum term or a logical product
(AND) of several sum terms.
Examples: x, x.(y + z), (x +y).(x + y+ z), (A+B).(A +B)

Every Boolean expression can either be expressed as a Sum-Of-Product or
Product-Of-Sum expression. For example,

 SOP: x .y + x.y + x.y.z
 POS: (x + y).(x + y).(x + z)
 Both: x + y + z or x.y.z
 Neither: x.(w + y.z) or z + w.x .y + v.(x.z + w)

7.4.5 Minterm and Maxterm

Consider two binary variables x, y. Each variable may appear as itself or in the
complemented form as literals (i.e., x, x and y, y). For two variables, there are
four possible combinations with the AND operator, namely:

x .y , x .y, x.y and x.y

Lattices

NOTES

Self-Instructional
106 Material

These product terms are called Minterms. In other words, A Minterm of
n variables is the product of n literals from the different variables. In general, n
variables can give 2n Minterms.

Similarly, a Maxterm of n variables is the sum of n literals from the different
variables.

Examples: x +y , x +y, x+y , x+y
In general, n variables can give 2n Maxterms.
The Minterms and Maxterms of 2 variables are denoted by m0 to m3 and

M0 to M3, respectively. In Table 7.4, all the Minterms and Maxterms are written.
 Table 7.4 Minterms and Maxterms

Minterms Maxterms
x y Term Notation Term Notation

0 0 x' .y' m0 x + y M0

0 1 x' .y m1 x + y' M1

1 0 x .y' m2 x' + y M2

1 1 x .y m3 x' + y' M3

If you examine carefully, each Minterm is the complement of the
corresponding Maxterm. For example, m2 = x.y and m2 = (x.y) = x + (y) =
x +y = M2. In other words, Maxterm is the sum of terms of the corresponding
Minterm with its literal complemented.

7.4.6 Canonical Form: Sum of Minterms

Canonical form is a unique way of representing Boolean expressions. Any Boolean
expression can be written in the form of the sum of Minterm. A symbol is used
for showing the sum of Minterms. For example,

Table 7.5 Sum of Minterms

x y x F1 F2 F3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0

NOTES

Self-Instructional
Material 107

LatticesSum-of-Minterms by gathering/summing the Minterms of the function (where
result is a 1) can be obtained as follows:

F1 = x.y.z = m (6)
F2 = x .y .z + x.y .z + x.y .z + x.y.z + x.y.z = m(1,4,5,6,7)
F3 = x .y .z + x .y.z + x.y .z + x.y .z = m(1,3,4,5)

7.4.7 Canonical Form: Product of Maxterms

Maxterms are sum terms. For Boolean functions, the Maxterms of a function are
the terms for which the result is 0. Boolean functions can be expressed as Products-
of-Maxterms. For Table 7.5, each output F1, F2 and F3 can be represented in
Product-of-Maxterm. A symbol is used to represent Product-of-Maxterms.

 F1 = (x + y + z).(x + y + z).(x + y + z).(x + y + z).(x + y + z)
 .(x + y + z).(x + y + z)

= M(0,1,2,3,4,5,7)
F2 = (x + y + z).(x + y + z).(x + y + z)

= M(0,2,3)
F3 = (x + y + z).(x + y + z).(x + y + z).(x + y + z)

= M(0,2,6,7)

7.4.8 Conversion of Canonical Forms

Sum-of-Minterms Product-of-Maxterms
Rewrite Minterm shorthand using Maxterm shorthand.
Replace Minterm indices with indices not already used.

For example, F1(x,y,z)= m(6) = M(0,1,2,3,4,5,7).
Product-of-Maxterms Sum-of-Minterms

Rewrite Maxterm shorthand using Minterm shorthand.
Replace Maxterm indices with indices not already used.

For example, F2(x,y,z)= M(0,2,3) = m(1,4,5,6,7).
Sometimes, you are given the reduced expression for any Boolean expression.

In this case, you need to find Minterms or Maxterms present in the expression. To
convert from a general expression to a Minterm or Maxterm expression, you can
use either the truth table or the algebraic manipulation.

For example, suppose you wish to find all the Minterm expansions of F =
AB + A C.
The truth table for the expression is represented as shown in Table 7.6:

Lattices

NOTES

Self-Instructional
108 Material

Table 7.6

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

From the Table 7.6, F = A .B .C + A .B.C + A.B .C + A.B .C
= m (1, 3, 4, 5)

Using Algebraic Manipulation

Use X + X = 1 to introduce the missing variables in each term; this introduction
will not change the overall expression value. Therefore, for the Boolean expression
F = AB + A C, the missing variable in the first term is C and in the second term is
B. So, the missing variable can be introduced as follows:

= A.B .(C + C) + A .C.(B + B)
= A.B .C + A.B .C + A .B.C + A .B .C
= m5 + m4 + m3 + m1

= m (1, 3, 4, 5)
Similarly, you can find all the Maxterms for reduced expressions. Find the Maxterms
expansion of F = (A + B) (A + C)
Using Algebraic Expression: In this case, XX = 0 is used to introduce missing
variables in each term.
Therefore, F = (A + B + CC). (A + C + BB)
Assuming that (A + B) = X and C.C = YZ, you can use the expression rule
= X+YZ =(X+Y)(X+Z)

F = (A + B +C)(A+B +C)(A +B+C)(A +B +C)
 = (2, 3, 4, 6)

Using the Truth Table:
A B C F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F (A,B,C) = (2, 3, 4, 6)

NOTES

Self-Instructional
Material 109

Lattices7.4.9 Boolen Algebra as Lattices

Let B be a non-empty set with two binary operations + (or) and, (or), a
unary operation, and two distinct elements 0 and 1. Then B is called a Boolean
algebra if the following axioms hold wher a,b, c are any elements in B.

(i) a + b = b + a; a . b = b. a (commutative laws)
(ii) a + (b . c) = (a + b) . (a + c); a.(b + c) = (a . b) (a . c) (Distributie laws)
(iii) a + 0 = a; a . 1 = a (Identity laws)
(iv) a + a =1; a . a = 0 (Complement laws)

Boolean algebra is a lattice which contains a least element and a greatest
element and which is both complemented and distributive.

We denote the Boolean algebra B by (B, +, ., 1, 0, 1). Here we call 0 as the
zero element, 1 as the unit element, and a is complement of a, + and . are called
sum and product.

Let B = {0,1}, the set of binary digits with the binary operations of + and
. and the unary operation defined by

1 0
1 1 1
0 1 0

1 0
1 1 0
0 1 0

1 0
0 1

'

Then B is a Boolean algebra.

7.4.10 Atom

A non zero element ‘a’ in a Boolean algebra (B, +, .,) is called an atom if for every
x B, x a = a or x a = 0.
Note: Here the condition x a = a means that x is a successor of a and x a = 0 is true only
when x and a are ‘not connected’. So in any Boolean algebra, the immediate successors of
the 0-element are called atoms.

Let A be any non-empty set and P(A) the power set of A. In Boolean
algebra (p(A), , , ́) over , the singleton sets are the atoms since each element
p(A) can be described completely and uniquely as the union of singleton sets.

Let B = {1,2, 3, 5, 6, 10, 15, 30} and let the relation be divides. The
operation is GCD and is LCM. The 0-element is 1. Then the set of atoms of
the Boolean algebra is {2,3,5}.
Notes:

1. Let (B, +, . ,´) be any finite Boolean algebra and let A be the set of all atoms. Then (B,
+,., ́) is isomorphic to (p(A), , , ́).

2. Every finite Boolean algebra (B,+,.,´) has 2n elements for some position integer n.
3. All Boolean algebra of order 2n are isomorphic to each other. Finite Boolean algebras

are n-tuples of 0´s and 1 ś.

Lattices

NOTES

Self-Instructional
110 Material

The simplest nontrivial Boolean algebra is the Boolean algebra B = {0, 1},
the set of binary digits with the binary operations of + and . and the unary operation
´ given by,

1 0
1 1 1
0 1 0

1 0
1 1 0
0 1 0

1´
1 0
0 1

If we form B2 = B × B, we obtain the set B2={(0,0), (0,1), (1, 0), (1, 1)}.
Define +, . and ́ by

(0, 1) + (1, 1) = (0 + 1, 1+1) = (1, 1),
(0, 1).(1,1) = (0.1, 1.1) = (0, 1) and
(0,1)´ = (0´, 1´) = (1, 0).

The B2 is a Boolean algebra.
Note: Here B2 is a Boolean algebra of order 4 under component wise operations. Since all
Boolean algebra of order 4 are isomorphic to each other, this is a simple way of describing all
Boolean algebras of order 4. In general, any Boolean algebra of order 2n are isomorphic to Bn.

Example 7.9: Find the atoms of the Boolean algebra (i) B2 (ii) B4 (iii) Bn for n 1.
Solution:

(i) (0, 1) and (1, 0)
(ii) (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1)
(iii) The n-tuples with exactly one 1.

Check Your Progress
1. What do you understand by the lattice?
2. Explain the distributive lattice.
3. Define the modular lattice.
4. Elaborate on the bounded lattice.
5. State the complement of an element.
6. Interpret the complement lattice.
7. Explain the sublattice.
8. Define the Boolean algebra.
9. Illustrate the Boolean function.

10. Analyse the term 'atom' in Boolean algebra.

7.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A lattice is a partially ordered set (L,) in which every pair of elements a,
b L has a Greatest Lower Bound (GLB) and a Least Upper Bound (LUB).

NOTES

Self-Instructional
Material 111

Lattices2. A Lattice (L,) is said to be distributive lattice if for any a, b, c, L,
a (b c) = (a b) (a c)
a (b c) = (a b) (a c).

3. Modular Lattice: A Lattice (L,) is said to be modular lattice if
a c a (b c) = (a b) c.

4. Bounded Lattice: A Lattice (L,) which has both, a least element denoted
by 0, and the greatest element denoted by 1 is called a bounded lattice.

5. Complement of an Element: In a bounded Lattices (L,), an element b L
is called a complement of an element a L if a b = 0 and a b = 1, we
denote b by a.

6. Complement Lattice: A Lattice (L,) is said to be complemented lattice if
every element of L has at least one complement.

7. Let M be a non-empty subset of a Lattice (L,). We say that M is a sublattice
of L if M itself is a lattice with respect to the operations of L.

8. Boolean algebra is named after George Boole, who used it to study human
logical reasoning. For example, any event can be true or false. Similarly,
connectives can be of any of the following three basic forms:
1. a OR b
2. a AND b
3. NOT a

9. A Boolean function is an expression formed with binary variables, the two
binary operators OR and AND, the unary operator NOT, and the equal
and parenthesis signs. Its result is also a binary value. The general usage is
‘.’ for AND, ‘+’ for OR and ‘ ’ for NOT.

10. A non zero element ‘a’ in a Boolean algebra (B, +, .,) is called an atom if
for every x B, x a = a or x a = 0.

7.6 SUMMARY

A lattice is a partially ordered set (L,) in which every pair of elements a,
b L has a Greatest Lower Bound (GLB) and a Least Upper Bound (LUB).
A Lattice (L,) is said to be distributive lattice if for any a, b, c, L,

a (b c) = (a b) (a c)
a (b c) = (a b) (a c).

Modular Lattice: A Lattice (L,) is said to be modular lattice if
a c a (b c) = (a b) c.

Lattices

NOTES

Self-Instructional
112 Material

Bounded Lattice: A Lattice (L,) which has both, a least element denoted
by 0, and the greatest element denoted by 1 is called a bounded lattice.
Complement of an Element: In a bounded Lattices (L,), an element b L
is called a complement of an element a L if a b = 0 and a b = 1, we
denote b by a.
Complement Lattice: A Lattice (L,) is said to be complemented lattice if
every element of L has at least one complement.
Let M be a non-empty subset of a Lattice (L,). We say that M is a sublattice
of L if M itself is a lattice with respect to the operations of L.
Boolean algebra is named after George Boole, who used it to study human
logical reasoning. For example, any event can be true or false. Similarly,
connectives can be of any of the following three basic forms:
1. a OR b
2. a AND b
3. NOT a
A Boolean function is an expression formed with binary variables, the two
binary operators OR and AND, the unary operator NOT, and the equal
and parenthesis signs. Its result is also a binary value. The general usage is
‘.’ for AND, ‘+’ for OR and ‘ ’ for NOT.
A non zero element ‘a’ in a Boolean algebra (B, +, .,) is called an atom if
for every x B, x a = a or x a = 0.

7.7 KEY WORDS

Lattice: A poset in which every pair of elements have both a least upper
bound and a greatest lower bound is called a lattice.
Distributive lattice: A lattice (L,) is said to be distributive lattice if for
any a, b, c, L

a (b c) = (a b) (a c)
a (b c) = (a b) (a c)

Modular lattice: A lattice (L,) is said to be modular lattice if a c a
 (b c) = (a b) c.

Bounded lattice: A lattice (L,) which has both, a least element denoted
by 0, and the greatest element denoted by 1 is called a bounded lattice.
Complement lattice: A lattice (L,) is said to be complemented lattice if
every element of L has at least one complement.
Subset: Let M be a non-empty subset of a lattice (L,). We say that M is
a sublattice of L if M itself is a lattice with respect to the operation of L.

NOTES

Self-Instructional
Material 113

LatticesBoolean algebra: Boolean algebra is named after George Boole, who
used it to study human logical reasoning. For example, any event can be
true or false.

7.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the lattice.
2. Define distributive lattice.
3. Elaborate on the modular lattice.
4. State bounded lattice.
5. Illustrate the complement of an element.
6. Interpret the complement lattice.
7. Explain the sublattice.
8. Define Boolean algebra.
9. Analyse the Boolean function.

10. Elaborate on the minterm and maxterm.

Long-Answer Questions

1. Explain the term lattice with their basic properties.
2. Differentiate between the modular lattice and bounded lattice giving

appropriate examples.
3. Prove that every finite subset of a lattice has an LUB and a GLB.
4. Show that in a direct product of any two distributive lattices is a distributive

lattice.
5. Show that in a lattice with two or more elements, no element is its own

complement.
6. A lattice is said to the modular if a c a (b c) = (a b) c. Show

that every distributive lattice is modular but not conversely.
7. Show that a lattice is modular if and only if a (b (a c)) = (a b)

(a c).
8. Is the cartesian product of two lattices always a lattice? Prove your claim.

7.9 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Lattices

NOTES

Self-Instructional
114 Material

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 115

Coding Theory

UNIT 8 CODING THEORY

Structure
8.0 Introduction
8.1 Objectives
8.2 Computer Codes

8.2.1 Binary Coded Decimal (BCD)
8.2.2 Extended Binary Coded Decimal Interchange (EBCDIC)
8.2.3 American Standard Code for Information Interchange (ASCII)
8.2.4 Excess-3 Code
8.2.5 Gray Code
8.2.6 Alphanumeric Codes

8.3 Hamming Distance
8.4 Encoding a Message
8.5 Groups Codes

8.5.1 Procedure for Generating Group Codes
8.6 Decoding Error Correction

8.6.1 Error-Correcting Codes
8.7 Answers to Check Your Progress Questions
8.8 Summary
8.9 Key Words

8.10 Self Assessment Questions and Exercises
8.11 Further Readings

8.0 INTRODUCTION

Coding theory is the study of the properties of codes and their respective fitness
for specific applications. Codes are used for data compression, cryptography,
error detection and correction, data transmission and data storage. Codes are
studied by various scientific disciplines—such as information theory, electrical
engineering, mathematics, linguistics, and computer science for the purpose of
designing efficient and reliable data transmission methods. This typically involves
the removal of redundancy and the correction or detection of errors in the
transmitted data.

In 1948, Claude Shannon published “A Mathematical Theory of
Communication”, an article in two parts in the July and October issues of the Bell
System Technical Journal. This work focuses on the problem of how best to encode
the information a sender wants to transmit. In this fundamental work he used tools
in probability theory, developed by Norbert Wiener, which were in their nascent
stages of being applied to communication theory at that time. Shannon developed
information entropy as a measure for the uncertainty in a message while essentially
inventing the field of information theory.

Coding Theory

NOTES

Self-Instructional
116 Material

The binary Golay code was developed in 1949. It is an error-correcting
code capable of correcting up to three errors in each 24-bit word, and detecting
a fourth.

Error correction adds extra data bits to make the transmission of data more
robust to disturbances present on the transmission channel. The ordinary user
may not be aware of many applications using error correction. A typical music
compact disc (CD) uses the Reed-Solomon code to correct for scratches and
dust. In this application the transmission channel is the CD itself. Cell phones also
use coding techniques to correct for the fading and noise of high frequency radio
transmission. Data modems, telephone transmissions, and the NASA Deep Space
Network all employ channel coding techniques to get the bits through, for example
the turbo code and LDPC codes.

In this unit, you will study about the coding theory, computer codes, Hamming
distance, encoding a message, group codes, procedure for generating group codes,
and decoding and error correction.

8.1 OBJECTIVES

After going through this unit, you will be able to:
Understand the coding theory
Explain the computer codes
Elaborate on the Hamming distance
Interpret the encoding a message
Define the groups codes
Analyse the procedure for generating group codes
Describe the decoding and error correction

8.2 COMPUTER CODES

A code is a symbol or group of symbols that stands for something. It is a
representation of discrete elements of information, which may be in the form of
numbers, letters or any other varying physical quantities. Binary bits 1 and 0 are
often used in groups. The codes are used to communicate the information to the
digital computer and to retrieve from it. The purpose of the code is that the operator
can feed data into computers directly in decimal numbers, alphabets and special
characters. The computer in turn converts these data in binary code which it can
process and after computation, it again converts the binary data into decimal
numbers, alphabets and special characters which we could understand easily.

Certain binary codes are used for arithmetic operations. Other codes facilitate
the creation of digital transducers for entering information into a system.

NOTES

Self-Instructional
Material 117

Coding TheoryBits and Bytes
All data to be stored and processed in computers are transformed or coded as
strings of two symbols, one symbol to represent each state. The two symbols
normally used are 0 and 1. These are known as BITS, an abbreviation for BInary
digiTS.

Let us now understand some commonly used terms.

BITS A bit is the smallest element used by a computer. It holds one of the two
possible values.

Value Meaning
 0 Off

1 On

A bit which is OFF is also considered to be FALSE or NOT SET; a bit which is
ON is also considered to be TRUE or SET.

Since a single bit can only store two values, there could possibly be only
four unique combinations as follows,

00 01 10 11

Bits are therefore, combined together into larger units in order to hold greater
range of values.

NIBBLE A nibble is a group of FOUR bits (4 bits). This gives a maximum
number of sixteen possible different values.

24 = 16 (2 to the power of the number of bits)

BYTES Bytes are a grouping of 8 bits (two nibbles) and are often used
to store characters. They can also be used to store numeric values.

28 = 256 (2 to the power of the number of bits)

Representation of Characters
Binary data is not the only data handled by the computer. We also need to process
alphanumeric data like alphabets (upper and lower case), digits (0 to 9) and special
characters like + – * / () space or blank etc. These also must be internally represented
as bits.

8.2.1 Binary Coded Decimal (BCD)
Binary Coded Decimal (BCD) is one of the early memory codes. It is based on the
concept of converting each digit of a decimal number into its binary equivalent rather
than converting the entire decimal value into a pure binary form. It further uses four
digits to represent each of the digits. Table 8.1 shows the BCD equivalent of the
decimal digits.

Coding Theory

NOTES

Self-Instructional
118 Material

Table 8.1 BCD Equivalent of Decimals

Decimal Number Binary Equivalent
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Converting (42)10 into its BCD equivalent, would result in:

(42)10 =
0100

4
0100

2 or 01000010 in BCD

As seen, 4 bit BCD code can be used to represent decimal numbers only.
Since 4 bits are insufficient to represent the various other characters used by the
computer, instead of using only 4-bits (giving 16 possible combinations), computer
designers commonly use 6 bits to represent characters in BCD code. In this, the 4
BCD numeric place positions are retained, but two additional zone positions are
added. With 6 bits it is possible to represent 26 or 64 different characters. This is
therefore sufficient to represent the decimal digits (10), alphabetic characters (26),
and special characters (28).

8.2.2 Extended Binary Coded Decimal Interchange (EBCDIC)

The abbreviation EBCDIC stands for the Extended Binary Coded Decimal
Interchange Code. It is an 8-bit code in which the decimal digits are represented
by the 8421 BCD code preceded by 1111.

The major drawback with the BCD code is that it allows only 64 different
characters to be represented. This is not sufficient to provide for decimal numbers
(10), lowercase letters (26), uppercase letters (26), and a fairly large number of
special characters (28 plus).

The BCD code was therefore extended from a 6 bit to an 8 bit code. The
added 2 bits are used as additional zone bits, expanding the zone bits to 4. This
resulting code is called the Extended Binary Coded Decimal Interchange Code
(EBCDIC). Using the EBCDIC it is possible to represent 28 or 256 characters.
This takes care of the character requirement along with a large quantity of printable
and several non-printable control characters (movement of the cursor on the screen,
vertical spacing on printer etc.).

NOTES

Self-Instructional
Material 119

Coding TheorySince EBCDIC is an 8 bit code, it can easily be divided into two 4 bit
groups. Each of these groups can be represented by one hexadecimal digit
(explained earlier in this unit). Thus, hexadecimal number system is used as a
notation for memory dump by computers that use EBCDIC for internal
representation of characters.

Developed by IBM, EBCDIC code is used in most IBM models and many
other computers.

8.2.3 American Standard Code for Information Interchange (ASCII)
The abbreviation ASCII stands for the American Standard Code for Information
Interchange. The ASCII code is a 7-bit code used in transferring coded information
from keyboards and to computer displays and printers. It is used to represent
numbers, letters, punctuation marks as well as control characters. For example, the
letter A is represented by 100 0001. Several computer manufacturers have adopted
it as their computers’ internal code. This code uses 7 digits to represent 128
characters. Now an advanced ASCII is used having 8 bit character representation
code allowing for 256 different characters. This representation is being used in micro
computers.

Let us look at the encoding method. Table 8.2 below shows the bit combinations
required for each character.

Table 8.2 Bit Combinations for Each Character

Thus, to code a text string ‘Hello’ in ASCII using hexadecimal digits:

H e l l o .
48 65 6C 6C 6F 2E

The string is represented by the byte sequence 48 65 6C 6C 6F 2E.

8.2.4 Excess-3 Code

The Excess-3 is a digital code that is derived by adding to each decimal digit and
then converting the result to four-bit binary. The Excess-3 code is used in some

Coding Theory

NOTES

Self-Instructional
120 Material

arithmetic circuits because it is self-complementing. Table 8.3 shows Excess-3
codes to represent single decimal digit and its BCD code.

Table 8.3 BCD and Excess-3 Codes

Decimal
BCD Excess-3 CodeDigit

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

8.2.5 Gray Code

The Gray code belongs to a class of codes called minimum change codes, in
which only one bit in the code group changes when going from one step to the
next. Gray code is not an arithmetic code.

Table 8.4 Gray Code

Decimal
Binary Code Gray CodeDigit

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 1

NOTES

Self-Instructional
Material 121

Coding TheoryTable 8.4 shows the Gray code representation for the decimal numbers 0
through 9 together with the straight binary code.

8.2.6 Alphanumeric Codes
Alphanumeric codes are the codes that represent alphabetic characters (letters),
punctuation marks and other special characters. Alphanumeric code represents all
of the various characters and functions that are found on a computer keyboard.

Check Your Progress

1. Define the computer codes.
2. Explain the binary coded decimal.
3. What do you understand by the 'EBCDIC'?
4. Interpret the American standard code for information interchange.
5. Elaborate on the excess-3 code.
6. State the Gray code.
7. Explain the alphanumeric code.

8.3 HAMMING DISTANCE

In 1950, R.W. Hamming developed a system that provides an orderly way to add
one or more parity bits to a data character to allow detection or both error detection
and correction. The Hamming distance between two code words is defined as
the number of bits that must be changed for one code word to another. It is actually
a method for constructing codes with a minimum distance of 3.

For any value of i, Hamming code method yields a (2i – 1)—bit code with
i check bits and 2i – 1 – i information bits. Distance-3 codes with a smaller number
of information bits are obtained by deleting information bits from a Hamming code
with a larger number of bits.

The bit positions in a Hamming code word can be numbered from 1 through
2i – 1. In this case, any position whose number is a power of 2 is a check bit, and
the remaining positions are information bits. Each check bit is grouped with a
subset of the information bits, as specified by a parity-check matrix as shown in
Figure 8.1. Each check bit is grouped with the information positions whose numbers
have a 1 in the same bit when expressed in binary. For example, check bit 2 (010)
is grouped with information bits 3(011), 6(110) and 7(111). For a given combination
of information bit values, each check bit is chosen to produce even parity, that is,
so the total number of 1s in its group is even.

The bit positions of a parity-check matrix and the resulting code words are
rearranged so that all of the check bits are on the right, as in Figure 8.1(b). The
first two columns of Table 8.5 list the resulting code words.

Coding Theory

NOTES

Self-Instructional
122 Material

Bit position

(a) Hamming codes with bit positions in numerical order

Bit position

(b) Hamming codes with check bits and information bits separated

Fig. 8.1 Parity-Check Matrices for 7-bit Hamming Codes

We can prove that the minimum distance of a Hamming code is 3 by proving that
at least a 3-bit change must be made to code a word to obtain another code
word.We can also prove that a 1-bit or 2-bit change in a code word yields a non-
code word.

If we change 1-bit of a code word in position j, then we change the parity
of every group that contains position j. Since every information bit is contained in
at least one group, at least one group has incorrect parity, and the result is a non-
code word.

If we change two bits in positions j and k, parity groups that contain both
positions j and k will still have correct parity. This is because parity is not affected
when an even number of bits are changed. However, since j and k are different,
their binary representations differ in at least one bit, corresponding to one of the
parity groups. This group has only one bit changed, resulting in incorrect parity
and a non-code word.

For the proof of 1-bit errors, the position numbers must be non-zero. For
the proof of 2-bit errors, no two positions have the same number. Thus, with an i-
bit position number, we can construct a Hamming code with up to 2i – 1 bit
positions.

The proof also suggests how can an error-correcting decoder be designed
for a received Hamming code word. First, check all of the parity groups. If all the

NOTES

Self-Instructional
Material 123

Coding Theorygroups have even parity, then the received word is assumed to be correct. If one
or more groups have odd parity, then a single error is assumed to have occurred.
The pattern of groups that have odd parity called the syndrome must match one of
the columns in the parity-check matrix; the corresponding bit position is assumed
to contain the wrong value and is complemented. For example, using the code
defined by Figure 8.1(b), suppose we receive the word 0101011. Groups B and
C have odd parity, corresponding to position 6 of the parity-check matrix (the
syndrome is 1102, or 610). By complementing the bit in position 6 of the received
word, we determine that the correct word is 0001011.

A distance-3 Hamming code can easily be modified to increase its minimum
distance to 4. Add one more check bit, chosen so that the parity of all the bits,
including the new one, is even. As in the 1-bit even-parity code, this bit ensures
that all errors affecting an odd number of bits are detectable.

Distance-3 and distance-4 Hamming codes are commonly used to detect
and correct errors in computer memory systems, especially in large mainframe
computers where memory circuits account for the bulk of the system’s failures.

Table 8.5 Code Words in Distance-3 and Distance-4
Hamming codes with Four Information Bits

Minimum distance-3 Code Minimum distance-4 Code

Information Parity bits Information Parity bits
bits bits

0000 000 0000 0000
0001 011 0001 0111
0010 101 0010 1011
0011 110 0011 1100
0100 110 0100 1101
0101 101 0101 1010
0110 011 0110 0110
0111 000 0111 0001
1000 111 1000 1110
1001 100 1001 1001
1010 010 1010 0101
1011 001 1011 0010
1100 001 1100 0011
1101 010 1101 0100
1110 100 1110 1000

1111 111 1111 1111

Coding Theory

NOTES

Self-Instructional
124 Material

Example 8.1: Encode data bits 0101 into a seven bit even-parity Hamming code.

Solution: D7 D6 D5 P4 D3 P2 P1
0 1 0 1 1 0 1

Example 8.2: A seven-bit Hamming code is received as 1111101. What is the
correct code?

Solution: D7 D6 D5 P4 D3 P2 P1
1 1 1 1 1 0 1

0 1 0

Bits 4, 5, 6 and 7, no error
Bits 2, 3, 6 and 7, error
Bits 1, 3, 5 and 7, no error
Bit 2 is in error, and the correct code is 1111111

Example 8.3: For a received data 1100010, determine whether a single error
occurred and, if so, correct the error.

Solution: Checking the three parity bit, groups for even-parity, we have:

P1 P2 8 P4 4 2 1
1 1 0 0 0 1 0
P1 + 8 + 4 + 1 = 1 + 0 + 0 + 0 = F
P2 + 8 + 2 + 1 = 1 + 0 + 1 + 0 = E (even-parity)
P4 + 4 + 2 + 1 = 0 + 0 + 1 + 0 = F (failed even parity check)

Any even parity failure indicates an error has occurred, the bit 5 was in error.
Thus, the correct digit is 6.

1 2 3 4 5 6 7
1 1 0 0 0 1 0

1 1 0 0 1 1 0 (= digit 6)

Example 8.4: Determine the single error-correcting code for the BCD number
1001 (information bits) using even parity.

Solution: First, find the number of parity bits required. Let P = 3.

Then 2P = 23 = 8
Since 2P m + p + 1, we have m + p + 1 = 4 + 3 + 1 = 8
Three parity bits are sufficient.
Total code bits = 4 + 3 = 7
Construct a bit position table.

NOTES

Self-Instructional
Material 125

Coding TheoryBit designation P1 P2 M1 P3 M2 M3 M4

Bit position 1 2 3 4 5 6 7

Binary position number 001 010 011 100 101 110 111

Information bits 1 0 0 1

Parity bits 0 0 1

Parity bits are determined in the following steps:

P1 checks bit positions 1, 3, 5 and 7 and must be a 0 in order to have an even
number of 1s (2) in this group.

P2 checks bit positions 2, 3, 6 and 7 and must be a 0 in order to have an even
number of 1s (2) in this group.

P3 checks bit positions 4, 5, 6 and 7 and must be a 1 in order to have an even
number of 1s (2) in this group.

These parity bits are entered into the table, and the resulting combined code is
0011001.

Example 8.5: Determine the single error-correcting code for the information code
10110 for odd-parity.

Solution: Determine the number of parity bits required. In this case the number of
information bits, m, is five.

Let p = 4, 2p = 24 = 16

We know that m + p + 1 = 5 + 4 + 1 = 10

Four parity bits are sufficient

Total code bits = 5 + 4 = 9

Construct a bit position table

Bit designation P1 P2 M1 P3 M2 M3 M4 P4 M5

Bit position 1 2 3 4 5 6 7 8 9

Binary position

number 0001 0010 0011 0100 0101 0110 0111 1000 1001

Information bits 1 0 1 1 0

Parity bits 1 0 1 1

Parity bits are determined as follows:

P1 checks bit positions 1, 3, 5, 7 and 9 and must be a 1 to have an odd
number of 1s (3) in this group.
P2 checks bit positions 2, 3, 6 and 7 and must be a 0 to have an odd
number of 1s (3) in this group.
P3 checks bit positions 4, 5, 6 and 7 and must be a 1 to have an odd
number of 1s (3) in this group.

Coding Theory

NOTES

Self-Instructional
126 Material

P4 checks bit positions 8 and 9 and must be a 1 to have an odd number of
1s (1) in this group.
These parity bits are entered into the table, and the resulting combined
code is 101101110.

Example 8.6: The code word 0011001 is transmitted and that 0010001 is
received. The receiver does not know what was transmitted and must look for
proper parities to determine if the code is correct. Designate any error that has
occurred in transmission if even-parity is used.
Solution: First, prepare a bit position table:

Bit designation P1 P2 M1 P3 M2 M3 M4

Bit position 1 2 3 4 5 6 7

Binary position number 001 010 011 100 101 110 111

Received code 0 0 1 0 0 0 1

First parity check: P1 checks positions 1, 3, 5 and 7
There are two 1s in this group.
Parity check is good, 0 (LSB)
Second parity check: P2 checks positions 2, 3, 6 and 7.
There are two 1s in this group.
Parity check is good, 0
Thirty parity check: P3 checks positions 4, 5, 6 and 7.
There is one in this group.
Parity check is bad, 1 (MSB)
Result: The error position code is 100 (binary 4). This says that the bit in the
number 4 position is in error. It is a 0 and should be a 1. The correctd code is
0011001, which agrees with the transmitted code.

8.4 ENCODING A MESSAGE

The encoding of a message is the production of the message. It is a system of
coded meanings, and in order to create that, the sender needs to understand how
the world is comprehensible to the members of the audience.

In the process of encoding, the sender (i.e. encoder) uses verbal (e.g. words,
signs, images, video) and non-verbal (e.g. body language, hand gestures, face
expressions) symbols for which he or she believes the receiver (that is, the decoder)
will understand. The symbols can be words and numbers, images, face expressions,
signals and/or actions. It is very important how a message will be encoded; it
partially depends on the purpose of the message.

NOTES

Self-Instructional
Material 127

Coding TheoryProduction – This is where the encoding, the construction of a message begins.
Production process has its own “Discursive” aspect, as it is also framed by meanings
and ideas; by drawing upon society’s dominant ideologies, the creator of the
message is feeding off of society’s beliefs, and values. Numerous factors are involved
in the production process. On one hand “Knowledge-in-use concerning the routines
of production, technical skills, professional ideologies, institutional knowledge,
definitions and assumptions, assumptions about the audience” form the “production
structures of the television.” On the other hand, “topics, treatments, agendas, events,
personnel, images of the audience, ‘definitions of the situation’ from other sources
and other discursive formations” form the other part of wider socio-cultural and
political structure.

The Encoding/Decoding model of communication was first developed by
cultural studies scholar Stuart Hall in 1973. Titled “Encoding and Decoding in the
Television Discourse”, Hall’s essay offers a theoretical approach of how media
messages are produced, disseminated, and interpreted. Hall proposed that audience
members can play an active role in decoding messages as they rely on their own
social contexts, and might be capable of changing messages themselves through
collective action.

8.5 GROUPS CODES

In coding theory, group codes are a type of code. Group codes consist of n linear
block codes which are subgroups of , where is a finite Abelian group. AA

systematic group code is a code over of order defined by
homomorphisms which determine the parity check bits. The remaining bits are
the information bits themselves.

8.5.1 Procedure for Generating Group Codes

Group codes can be constructed by special generator matrices which resemble
generator matrices of linear block codes except that the elements of those matrices
are endomorphisms of the group instead of symbols from the code’s alphabet.
For example, considering the generator matrix

The elements of this matrix are matrices which are endomorphisms. In this
scenario, each code word can be represented as where

 are the generators of .

Coding Theory

NOTES

Self-Instructional
128 Material

8.6 DECODING ERROR CORRECTION

A code that uses n-bit strings need not contain 2n valid code words. An error-
detecting code has the property that corrupting or garbling a code word will likely
produce a bit string that is not a code word (a non-code word).

A system that uses an error-detecting code generates, transmits, and stores
only code words. Thus, errors in a bit string can be detected by a simple rule—if
the bit string is a code word, it is assumed to be correct; if it is a non-code word,
it contains an error.

Errors may occur while recording data on magnetic surfaces due to bad
spots on the surface. They may also be introduced during data transmission between
units, due to electrical disturbances. Most of these errors result in change of a bit
from 0 to 1 or 1 to 0. One of the simplest and most commonly used error detection
code is called the parity bit.

A parity bit is an extra bit added to the binary data so that it makes the total
number of 1s in the data either odd or even. In case of Even parity, a bit is added
to each character in such a way that the total number of 1s in each character code
is even. Similarly, in case of odd parity, the bit added to each character makes the
number of 1s in the character code odd.

In a 7-bit data 0110101, for example, let us add the eighth bit, which is a
parity bit. In case of even parity, the added bit, should be 0 since there are already
four 1s in the given 7-bit number. While in case of odd parity, the added bit would
be a 1 making the total number of 1s odd (5 in number).

All the characters would then have 8 bits including the parity check bit.
Whenever a character is read from storage or received from a remote location,
the number of bits in its code is counted. It has to be even (in case of even parity).
If it is odd, then at least one bit is wrong. A single error in any of the 8 bits of the
code will definitely be detected. However, two errors cannot be detected by this
scheme, as the total number of 1s will remain even after 2 bits change. The
probability of more than one error occurring at a time is usually very small and that
is why this scheme is commonly accepted as adequate.

Codes have also been devised which use more than one check bit in order
to not only detect but also correct errors. These are called error-correcting codes.

Parity
The most simple and commonly used error detecting method is the parity check
method, in which an extra bit called parity bit is included with the binary message,
to make the total number of 1s either odd or even, resulting in two methods; (i)
Even-parity method and (ii) Odd-parity method.

NOTES

Self-Instructional
Material 129

Coding TheoryThe ability of a code to detect single errors can be stated in terms of the
concept of distance. A code detects all single errors if the minimum distance
between all possible pairs of code words is 2.

In general, (n + 1) bits are needed to construct a single-error detecting
code with 2n code words. The first n bits of a code word, called information
bits, may be any of the 2n n-bit strings minimum error bit.

A code in which the total number of 1s in a valid (n + 1) bit code word is
even; this is called an even-parity code.

A code in which the total number of 1s in a valid (n + 1) bit code word is
odd and this code is called an odd-parity code. These codes are also sometimes
called 1-bit parity codes, since they each use a single parity bit. The parity bit can
be placed at either end of the code word, such that the receiver must be able to
understand the parity bit and the actual data.

An n-bit code and its error-detecting properties under the independent
error model are easily explained in terms of an n-cube. A code is simply a subset
of the vertices of the n-cube. In order for the code to detect all single errors, no
code-word vertex can be immediately adjacent to another code-word vertex.

Figure 8.2(a) shows a 3-bit code with five code words. Code word 111 is
immediately adjacent to code words 110, 011 and 101. Since a single failure
could change 111 to 110, 011 or 101 bits code does not detect all single errors. If
we make 111 a non-code word, we obtain a code that does have the single-error-
detecting property, as shown in Figure 8.2. No single error can change one code
word into another.

(a) Minimum distance = 1 (b) Minimum distance = 2
does not detect all single errors detects all single errors

Fig. 8.2 Code Words in Two-Different 3-Bit Codes

Coding Theory

NOTES

Self-Instructional
130 Material

Table 8.6 Distance-2 Codes with Three Information Bits

Information Even-parity Odd-parity
Bits Code Code
XYZ XYZ P XYZ P

000 000 1 000 1

001 001 1 001 0

010 010 1 010 0

011 011 0 011 1

100 100 1 100 0

101 101 0 101 1

110 110 0 110 1

111 111 1 111 0

The 1-bit parity codes do not detect 2-bit errors, since changing two bits does not
affect the parity. However, the codes can detect errors in any odd number of bits.
Actually, 1-bit parity codes error-detection capability stops after 1-bit errors.
Other codes, with minimum distance greater than 2, can be used to detect multiple
errors.

Checksum

Since the double error will not change the parity of the bits, the parity checker will
not indicate any error. The check sum method is used to detect double errors and
pinpoint erroneous bits. The working of checksum method is explained as follows:

Initially word A 10110111 is transmitted. Next word B 00100010 is
transmitted. The binary digits in the two words are added and the sum obtained is
retained in the transmitter. Then, a word C is transmitted and added to the previous
sum and the new sum is retained. Thus, each word is added to the previous sum
and after the transmission of all the words, the final sum, called checksum is also
transmitted. The same operation is also done independently at the receiver and
the final sum obtained at the receiver is checked against the transmitted checksum.
If the two sums are equal, then there is no error.

8.6.1 Error-Correcting Codes

A code that is used to correct errors is called an error-correcting code. In general,
if a code has minimum distance 2c+1, it can be used to correct errors, that affect
up to c bits. If a code’s minimum distance is 2c + d + 1, it can be used to correct
errors in up to c bits and to detect in up to d additional bits.

Consider a fragment—cube for a code with minimum of 3. There are at
least two non-code words between each pair of code words. Now, let us transmit
code words and assume that failures affect at most one bit of each received code
word. Then a received non-code word with a 1-bit error will be closer to the

NOTES

Self-Instructional
Material 131

Coding Theoryoriginally transmitted code word than to any other code word. Therefore, when
we receive a non-code word, we can correct the error by changing the received
non-code word to the nearest code word, as indicated by the arrows in the Figure.
Deciding which code word was originally transmitted to produce a received word
is called decoding, and the hardware that does this is an error-correcting decoder.

Fig. 8.3 Some Code Words and Non-code Words in a 7-bit Distance 3 Code

For example, consider a fragment of the n-cube for a code with minimum
distance 4 (c = 1, d = 1) [Figure 8.4(a)]. Single-bit errors that produce non-code
words 00101010 and 11010011 can be corrected. However, an error that
produces 10100011 cannot be corrected, because no single-bit error can produce
this non-code word, and either of two 2-bit errors could have produced it. So the
code can detect a 2-bit error, but it cannot correct it.

When a non-code word is received, we do not know which code word
was originally transmitted; we only know which code word is closest to what we
have received. Thus, a 3-bit error may be corrected to the wrong value as shown
in Figure 8.4(b). The possibility of making this kind of mistake may be acceptable
if 3-bit errors are very unlikely to occur. On the other hand, if we are concerned
about 3-bit errors, we can change, the decoding policy for the code. Instead of
connecting the errors, we can just flag all non-code words as uncorrectable errors.
Thus, we can use the same distance 4-code to detect up to 3-bit errors but correct
no errors (c = 0, d = 3) as shown in Figure 8.4(c).

Coding Theory

NOTES

Self-Instructional
132 Material

(a) Correcting 1-bit and detecting 2-bit errors

(b) Incorrectly Correcting a 3-Bit Errors

(c) Correcting no errors but detecting upto 3-bit errors

Fig. 7.4 Some Code and Non-code Words in an 3-bit Distance 4-code

Check Your Progress

8. Analyse the Hamming distance.
9. Illustrate the encoding a message.

10. Define the groups codes.
11. Describe the procedure for generating group codes.
12. Elaborate on the error-detecting codes.
13. Interpret the error-correcting codes.

NOTES

Self-Instructional
Material 133

Coding Theory
8.7 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. A code is a symbol or group of symbols that stands for something. It is a
representation of discrete elements of information, which may be in the
form of numbers, letters or any other varying physical quantities. Binary bits
1 and 0 are often used in groups.

2. Binary Coded Decimal (BCD) is one of the early memory codes. It is based
on the concept of converting each digit of a decimal number into its binary
equivalent rather than converting the entire decimal value into a pure binary
form. It further uses four digits to represent each of the digits.

3. The abbreviation EBCDIC stands for the Extended Binary Coded Decimal
Interchange Code. It is an 8-bit code in which the decimal digits are
represented by the 8421 BCD code preceded by 1111.

4. The abbreviation ASCII stands for the American Standard Code for
Information Interchange. The ASCII code is a 7-bit code used in transferring
coded information from keyboards and to computer displays and printers.
It is used to represent numbers, letters, punctuation marks as well as control
characters.

5. The Excess-3 is a digital code that is derived by adding to each decimal digit
and then converting the result to four-bit binary. The Excess-3 code is used
in some arithmetic circuits because it is self-complementing.

6. The Gray code belongs to a class of codes called minimum change codes,
in which only one bit in the code group changes when going from one step
to the next. Gray code is not an arithmetic code.

7. Alphanumeric codes are the codes that represent alphabetic characters
(letters), punctuation marks and other special characters. Alphanumeric code
represents all of the various characters and functions that are found on a
computer keyboard.

8. The Hamming distance between two code words is defined as the number
of bits that must be changed for one code word to another. It is actually a
method for constructing codes with a minimum distance of 3.

For any value of i, Hamming code method yields a (2i – 1)—bit code with
i check bits and 2i – 1 – i information bits. Distance-3 codes with a smaller
number of information bits are obtained by deleting information bits from a
Hamming code with a larger number of bits.

9. The encoding of a message is the production of the message. It is a system
of coded meanings, and in order to create that, the sender needs to
understand how the world is comprehensible to the members of the audience.

Coding Theory

NOTES

Self-Instructional
134 Material

10. In coding theory, group codes are a type of code. Group codes consist of
n linear block codes which are subgroups of , where is a finite

Abelian group. A systematic group code is a code over of order
 defined by homomorphisms which determine the parity check

bits. The remaining bits are the information bits themselves.

11. Group codes can be constructed by special generator matrices which
resemble generator matrices of linear block codes except that the elements
of those matrices are endomorphisms of the group instead of symbols from
the code’s alphabet. For example, considering the generator matrix

12. Errors may occur while recording data on magnetic surfaces due to bad
spots on the surface. They may also be introduced during data transmission
between units, due to electrical disturbances. Most of these errors result in
change of a bit from 0 to 1 or 1 to 0. One of the simplest and most commonly
used error detection code is called the parity bit.

13. A code that is used to correct errors is called an error-correcting code. In
general, if a code has minimum distance 2c+1, it can be used to correct
errors, that affect up to c bits. If a code’s minimum distance is 2c + d + 1,
it can be used to correct errors in up to c bits and to detect in up to d
additional bits.

8.8 SUMMARY

A code is a symbol or group of symbols that stands for something. It is a
representation of discrete elements of information, which may be in the
form of numbers, letters or any other varying physical quantities. Binary bits
1 and 0 are often used in groups.
Binary Coded Decimal (BCD) is one of the early memory codes. It is based
on the concept of converting each digit of a decimal number into its binary
equivalent rather than converting the entire decimal value into a pure binary
form. It further uses four digits to represent each of the digits.

The abbreviation EBCDIC stands for the Extended Binary Coded Decimal
Interchange Code. It is an 8-bit code in which the decimal digits are
represented by the 8421 BCD code preceded by 1111.

NOTES

Self-Instructional
Material 135

Coding TheoryThe abbreviation ASCII stands for the American Standard Code for
Information Interchange. The ASCII code is a 7-bit code used in transferring
coded information from keyboards and to computer displays and printers.
It is used to represent numbers, letters, punctuation marks as well as control
characters.

The Excess-3 is a digital code that is derived by adding to each decimal digit
and then converting the result to four-bit binary. The Excess-3 code is used
in some arithmetic circuits because it is self-complementing.

The Gray code belongs to a class of codes called minimum change codes,
in which only one bit in the code group changes when going from one step
to the next. Gray code is not an arithmetic code.

Alphanumeric codes are the codes that represent alphabetic characters
(letters), punctuation marks and other special characters. Alphanumeric code
represents all of the various characters and functions that are found on a
computer keyboard.

The Hamming distance between two code words is defined as the number
of bits that must be changed for one code word to another. It is actually a
method for constructing codes with a minimum distance of 3.

For any value of i, Hamming code method yields a (2i – 1)—bit code with
i check bits and 2i – 1 – i information bits. Distance-3 codes with a smaller
number of information bits are obtained by deleting information bits from a
Hamming code with a larger number of bits.

The encoding of a message is the production of the message. It is a system
of coded meanings, and in order to create that, the sender needs to
understand how the world is comprehensible to the members of the audience.

In coding theory, group codes are a type of code. Group codes consist of
n linear block codes which are subgroups of , where is a finite Abelian

group. A systematic group code is a code over of order defined
by homomorphisms which determine the parity check bits. The
remaining bits are the information bits themselves.

Errors may occur while recording data on magnetic surfaces due to bad
spots on the surface. They may also be introduced during data transmission
between units, due to electrical disturbances. Most of these errors result in
change of a bit from 0 to 1 or 1 to 0. One of the simplest and most commonly
used error detection code is called the parity bit.

A code that is used to correct errors is called an error-correcting code. In
general, if a code has minimum distance 2c+1, it can be used to correct
errors, that affect up to c bits. If a code’s minimum distance is 2c + d + 1,

Coding Theory

NOTES

Self-Instructional
136 Material

it can be used to correct errors in up to c bits and to detect in up to d
additional bits.

8.9 KEY WORDS

Computer code: A code is a symbol or group of symbols that stands for
something. It is a representation of discrete elements of information.
Bits: A bit is the smallest element used by a computer. It holds one of the
two possible values.
Nibble: A nibble is a group of FOUR bits (4 bits). This gives a maximum
number of sixteen possible different values.
Bytes: Bytes are a grouping of 8 bits (two nibbles) and are often used to
store characters.
Binary coded decimal: Binary coded decimal is one of the early memory
codes. It is based on the concept of converting each digit of a decimal
number into its binary equivalent rather than converting the entire decimal
value into a pure binary form.
Excess-3 code: The excess-3 code is a digital code that is derived by
adding to each decimal digit and then converting the result to four-bit binary.
Gray code: The gray code belongs to a class of codes called minimum
change codes, in which only one bit in the code group changes when going
from one step to the next. Gray code is not an arithmetic code.
Alphanumeric codes: Alphanumeric codes are the codes that represent
alphabetic characters (letters).
Hamming distance: The hamming distance between two code words is
defined as the number of bits that must be changed for one code to another.
Error-detecting codes: Errors may occur while recording data on magnetic
surfaces due to bad spots on the surface. One of the simplest and most
commonly used error detection code is called the parity bit.
Error-correcting codes: A code that is used to correct errors is called an
error-correcting code.

8.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you understand by the computer code?
2. Define the bits and bytes.

NOTES

Self-Instructional
Material 137

Coding Theory3. Elaborate on the binary coded decimal.
4. Illustrate the excess-3 code.
5. State the Gray code.
6. Explain the alphanumeric codes.
7. Analyse the Hamming distance.
8. Interpret the error-detecting codes.
9. Define the error-correcting codes.

Long-Answer Questions

1. Discuss briefly the computer codes with the help of examples.
2. Explain bits, bytes, and nibble. Give appropriate example.
3. Define binary coded decimal. How does it works?
4. Analyse the excess-3 code.
5. Interpret the significances of Hamming distance.
6. Elaborate on the encoding a message.
7. What are the groups codes? Describe the procedure for generating group

codes.
8. Analyse the error-detecting codes.
9. Briefly define the error- correcting codes.

8.11 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Coding Theory

NOTES

Self-Instructional
138 Material

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 139

Graph Theory
BLOCK - III

MATRIX OF A GRAPH AND
CHROMATIC NUMBERS

UNIT 9 GRAPH THEORY

Structure
9.0 Introduction
9.1 Objectives
9.2 Definition of a Graph

9.2.1 Directed and Undirected Graphs
9.3 Finite and Infinite Graphs
9.4 Incidence, Degree and Pendent Vertices Isomorphism
9.5 Sub Graphs
9.6 Walk, Paths and Circuits
9.7 Connected and Disconnected Graphs
9.8 Answers to Check Your Progress Questions
9.9 Summary

9.10 Key Words
9.11 Self Assessment Questions and Exercises
9.12 Further Readings

9.0 INTRODUCTION

Graph theory, which is mainly topological, touch the quantitative as well as qualitative
approaches of mathematics. Essentially, graph theory has great possibilities for
characterising systems and analysing the information from a set of objects. Graph
theory deals with connection amongst points such as vertices, lines, and edges.
Indeed, graph theory concerned with the network of points connected by lines. A
graph contains a set of vertices, a set of edges and a function. That is, graphs,
which are mathematical structures used to model pairwise relations between objects.
A graph in this context is made up of vertices (also called nodes or points) which
are connected by edges (also called links or lines).

The history of graph theory may be specifically traced to 1735, when the
Swiss mathematician Leonhard Euler solved the Königsberg bridge problem.
 Graph theory had its beginnings basically in recreational math problems, but,
nowadays, it is used into a significant area of mathematical research, with
applications in chemistry, operations research, social sciences, and computer
science. Graphs are one of the prime objects of study in discrete mathematics.

Every graph has its associated graph which is too very important for illustrate
the mathematical problems. A graph can be represented by the set of vertices,
denoted by V and edges denoted by E. it can be expressed as G = (V, E). A

Graph Theory

NOTES

Self-Instructional
140 Material

simple graph, also called a strict graph is an unweighted, undirected graph which
contains no graph loops or multiple edges. A simple graph may be
either connected or disconnected.

A finite graph is a graph in which the vertex set and the edge set are finite
sets. Otherwise, it is called an infinite graph. Most commonly in graph theory it is
implied that the graphs discussed are finite. If the graphs are infinite, that is usually
specifically stated.

In this unit, you will study about the definition of a graph, finite and infinite
graphs, incidence, degree, isolated and pendent vertices, isomorphism, sub graphs,
walks, paths and circuits, connected and disconnected graphs.

9.1 OBJECTIVES

After going through this unit, you will be able to:
Define a graph
Explain the finite and infinite graphs
Analyse incidence, degree, isolated and pendent vertices
Elaborate on the isomorphism
Understand the subgraphs
Comprehend the walks, paths and circuits
Interpret the connected and disconnected graphs

9.2 DEFINITION OF A GRAPH

The following are the basic terminologies and symbolic representations of various
graphs.

Graph
A graph G, a triplet)),(),((GGEGV consisting of a non-empty set V(G) of
vertices, a set)(GE of edges, and a function G assigns to each edge, a subset {u,
v} of V(G) (u, v need not be distinct). If e is an edge and u, v are vertices such
that ,)(uveG then e is a line (edge) between u and v; the vertices u and v are
the end points of the edge e.
For example, () ((), (),)Gi G V G E G

1 2 3 4

1 2 3 4 5 6

1 1 2 2 2 2 3 2 3

4 1 3 5 4 5 6 1 4

Where, () { , , , }
() { , , , , , }
() { }, () { }, () { }
() { }; () { }; () { }

G G G

G G G

V G v v v v
E G e e e e e e

e v v e v v e v v
e v v e v v e v v

NOTES

Self-Instructional
Material 141

Graph Theory

1 2 3 1 2 3

1 1 2 2 2 3 3 3 1

() ((), (),)
Where, () { , , }; () { , , }

() { }; () { }; () { }

G

G G G

ii G V G E G
V G v v v E G e e e

e v v e v v e v v
Every graph has a diagram associated with it. These diagrams are useful for

understanding problems involving such a graph. In the pictorial representation, we
represent the vertices by small circles and the edges by lines whenever the
corresponding pair of vertices forms an edge.

The following are the pictorial representation of Examples (i) and (ii):

Notes:

1. In Example (i), e2 joins the vertex v2 to itself. Such an edge is called self loop
(loop).

2. Suppose there is more than one edge between a pair of vertices in a graph,
these edges are called parallel edges.

3. Hereafter, we denote the graph),(EVG for simplicity..
4. A graph, which consists of parallel edges, is called a multigraph.

Simple Graph: A graph with no self-loops and parallel edges is called a simple
graph.
Complement of a Graph: The complement G of a graph G is a graph with

)()(GVGV and such that uv is an edge of G if and only if uv is not an edge of G.

For example,

Graph Theory

NOTES

Self-Instructional
142 Material

There are also some useful terminology for graphs with directed edges.
Graphs with Directed Edges: When (u, v) is an edge of the graph G with
directed edges, u is said to be adjacent to v and v is said to be adjacent from u.
The vertex u is called the initial vertex of (u, v) and v is called the terminal or end
vertex of the edge (u, v).

For example,

In-Degree and Out-Degree: In a graph with directed edges, the in-degree of a
vertex v denoted by d–(v) is the number of edges with v as their terminal vertex.
The out-degree of v denoted by d+(v) is the number of edges with v as their initial
vertex.

Note: Self loop at a vertex contributes 1 to both in-degree and out-degree of this vertex.

Example 9.1: Find the in-degree and out-degree of the following graphs:

Solution: The in-degree and out-degree of Cases (i) and (ii) are as follows:

(i) () 3; () 1; () 1; () 2; and () 1
() 2; () 2; () 1; () 2; () 1
() 1; () 1; () 1
() 1; () 1; () 1

d a d b d c d d d e
d a d b d c d d d e
d u d v d w
d u d v d w

(ii)

Notes:

1. Let),(EVG be a graph with directed edges. Then, () ()
v V v V

d v d v e .

2. By ignoring directions of edges in a graph with directed edges, we will get an undirected
graph. Such graphs are called underlying undirected graphs.

9.2.1 Directed and Undirected Graphs
In a directed graph every edge has a direction (Refer Figure 9.1). If there is
movement from a vertex to its adjacent vertex the direction is notified. If movement
is from vertex v1 to vertex v2, then v1v2 and v2v1 are different. Here movement is

NOTES

Self-Instructional
Material 143

Graph Theoryin one direction only. But in undirected graph, if there is movement in between v1
and v2, then movement in both the direction is possible. Such graphs are known
as undirected graphs (Refer Figure 9.2).

Fig. 9.1 Directed Graph Fig. 9.2 Undirected Graph

9.3 FINITE AND INFINITE GRAPHS

In discrete mathematics and more specifically in graph theory, a graph is defined
as a structure amounting to a set of objects in which some pairs of the objects are
in some capacity ‘Related’. The objects correspond to mathematical abstractions
called vertices (also sometimes termed as nodes or points) and each of the related
pairs of vertices is called an edge (also sometimes termed as link or line). Typically,
a graph is depicted in diagrammatic form as a set of dots or circles for the vertices,
joined by lines or curves for the edges. Fundamentally, a graph is a collection of
vertices connected to each other through a set of edges.

There are finite and infinite graph types. A finite graph is a graph in which the
vertex set and the edge set are finite sets. Otherwise, it is called an infinite graph.
Most commonly in graph theory it is implied that the graphs discussed are of finite
type. If the graphs are infinite, that is usually specifically stated.
Finite Graph: A graph consisting of finite number of vertices and edges is called
as a finite graph. If the graph has n nodes and has no multiple edges or graph
loops (i.e., it is simple), it is a subgraph of the complete graph Kn.

A graph which is not finite is called infinite. If every node has finite degree,
the graph is called locally finite. The Cayley graph of a group with respect to a
finite generating set is always locally finite, even if the group itself is infinite.

Fig. 9.3 Illustrates an Example of Finite Graph.

Graph Theory

NOTES

Self-Instructional
144 Material

The graph shown in Figure 9.3 consists of finite number of vertices and
edges. Therefore, it is a finite graph.
Infinite Graph: A graph consisting of infinite number of vertices and edges is
called as an infinite graph.

Fig. 9.4 Illustrates an Example of Infinite Graph.

The graph shown in Figure 9.4 consists of consists of infinite number of
vertices and edges. Therefore, it is an infinite graph

9.4 INCIDENCE, DEGREE AND PENDENT
VERTICES ISOMORPHISM

The concept of incidence associates an edge to the nodes that are connected by
that edge. For example, the edge {u, v} is incident to the nodes u and v. If there
is an edge that connects two nodes, we say that those nodes are adjacent. The
degree of a node v, denoted as deg(v), is the number of edges incident to it. In a
directed graph, the in-degree and out-degree count the number of directed edges
coming into and out of a vertex, respectively.
Degree of a Vertex: The degree of a vertex v is the number of edges incident
with that vertex. In other words, the degree of a vertex is the number of edges,
having that vertex as an end point, and is denoted by d(v). Figure 9.5 illustrates
the degree of vertex.
For example,

1

2

3

4

Here, () 2
() 3
() 2
() 3

d v
d v
d v
d v

Fig. 9.5 Degree of Vertex

A loop contributes 2 to the degree of vertex.

NOTES

Self-Instructional
Material 145

Graph TheoryIsolated Vertex: A vertex with degree zero is called an isolated vertex.

Pendant Vertex: A vertex with degree one is called a pendant vertex.

Adjacent Vertices: A pair of vertices that determine an edge are called adjacent
vertices.

Note: A vertex is even or odd if as its degree is even or odd.

Example 9.2: Let G be a simple graph with n vertices. Prove that the number of
edges)(GE is atmost nC2.

Solution: Let)),(),((GGEGVG be a simple graph with .|)(| nGV

Since G assigns to each edge, a 2 element subset {u, v} of V(G), there
are atmost nC2 number of 2 element subsets.

Hence,
2

)1()(nnGE

Theorem 9.1: Let G be a graph with n vertices and e edges. Then
1

() 2
n

i
i

d v e

Proof: Let G be a graph with n vertices and e edges.

Since every edge contributes degree 2 to this sum,
1

() 2
n

i
i

d v e

Theorem 9.2: In a graph G, the number of odd vertices is an even number.

Proof: Let G be a graph with n vertices and e edges.

By Theorem 3.1, we have,

1
() 2

n

i
i

d v e = Even number (9.1)

Among n vertices, some are even vertices and some are odd vertices. Let
Ve and Vo be the even and odd vertices, respectively.

Now Equation (9.1) can be written as,

0

0

() () Even number

() Even number ()

n

v V v Ve
n

v V v Ve

d v d v

d v d v (9.2)

Since every term in the right side of Equation (9.2) is even, the sum on the
left side must contain an even number of terms, i.e., the number of odd vertices in
G is even.
Minimum and Maximum Degrees: Let G be a graph. The minimum and
maximum degrees of G are, respectively, () and ()G G and given as:

Graph Theory

NOTES

Self-Instructional
146 Material

() min { (); ()}
() max { (); ()}
G d v v V G
G d v v V G

k-Regular: A graph G is k-regular or regular of degree k, if every vertex of G has
degree k.

Isomorphism
Two graphs G and H are said to be isomorphic if there exists bijections

: () ()V G V H and : () ()E G E H such that iff () iff (())G He uv e

() ()u v .

Such a pair of mappings),(is called an isomorphism between G and H and is
written as .HG

In other words, two simple graphs G and H are isomorphic iff there is a
bijection : () () such that () iff () () ().V G V H uv E G u v E H Figure
9.6 illustrates the isomorphic graphs as G and H.
For example,

Fig. 9.6 Isomerphic Graphs

Here, G and H are isomorphic.
The correspondence which gives isomorphism between G and H is as follows:

1 2 1 2

1 3 1 3

3 6 3 6

6 5 6 5

3 4 3 4

6 2 6 2

4 2 4 2

() () () ()
() () () ()
() () () ()
() () () ()
() () () ()
() () () ()
() () () ()

v v E G dc v v E H
v v E G da v v E H
v v E G ab v v E H
v v E G be v v E H
v v E G af v v E H
v v E G bc v v E H
v v E G fc v v E H

G H
Notes:

1. Two graphs),(and),(222111 EVGEVG are said to be isomorphic if a one-to-one

correspondence exists from V1 to V2 such that u and v are adjacent in G1, iff
)(and)(vu are adjacent in G2.

2. If ,HG then, degrees of corresponding vertices are equal.

Example 9.3: Prove that the graphs G and H are non-isomorphic.

NOTES

Self-Instructional
Material 147

Graph Theory

Solution: Clearly G and H are isomorphic.

In G, V1 is adjacent to the vertices V3, V4, V5 ; V2 is adjacent to the vertices V3, V4,
V5.

In H, u1 is adjacent to u3, u4, u5 and u2 is adjacent to u3, u4, u5.
Here, the function defined by 51,)(iuv ii gives the isomorphism.

Example 9.4: Prove that the graphs G and H are non-isomorphic.

Solution: Clearly G and H are non-isomorphic graphs.

In G, these two vertices (u1 and u2) are adjacent with three other vertices
(u3, u4, u5) whereas in H, the vertex w2 is adjacent to w1, w2, w4 and the vertex w3
is adjacent to w1, w2, w5. w2 and w3 are adjacent to each other.

In G, u1 and u2 are non-adjacent. Hence G is not isomorphic to H.
Note: From the above example, it is clear that two graphs are isomorphic if they have same
number of vertices and same number of edges and the degrees of the corresponding vertices
are equal, but the converse is not true.

Check Your Progress
1. What do you understand by graph?
2. Define the complement of a graph.
3. Explain the graphs with directed edges.
4. Elaborate on the in-degree and out-degree.
5. Analyse the finite graphs.
6. Describe the infinite graph
7. Illustrate the degree of vertex.
8. Explain the isolated and pendent vertex.
9. Define the minimum and maximum degree.

10. Elaborate on the isomorphism of graphs.

Graph Theory

NOTES

Self-Instructional
148 Material

9.5 SUB GRAPHS

Let there be a graph given by G(V, E). If another graph (denoted as H(V’, E’)) is
obtained by deleting few vertices and edges then it is the subgraph of G, if V’ in
graph H contains all the terminal points of edges in E’. If we remove an edge, its
terminal points remain in place, but if a vertex is removed, then edges that are
meeting on this vertex are also removed. Examples of graph and its sub-graph are
shown below in Figures 9.7 and 9.8.

Fig. 9.7 Graph G

Fig. 9.8 (i) Sub-graph H of G with Edges, Fig. 9.8 (ii) Sub-graph H of G with
v1v4 and v1v2 Removed Vertex v5 Removed.

9.6 WALK, PATHS AND CIRCUITS

A walk is a sequence of vertices and edges starting from any vertex and travelling
through edges to a destination vertex, such that no edge appears more than once.
But in a walk a vertex may be visited more than once. Examples of walk are
illustrated in Figures 9.9 and 9.10.

Fig. 9.9 This Shows a Walk with Fig. 9.10 This Shows a Walk with
Single Visit on Every Vertex Two Visits on Vertex v2

A path is a sequence of consecutive edges in a graph and the length of the path is
the number of edges traversed. Path is thus a sequence of adjacent edges, where
the edges are traversed only once. A circuit is a path which ends at the vertex it
begins, so a loop is an circuit of length one.

NOTES

Self-Instructional
Material 149

Graph Theory
9.7 CONNECTED AND DISCONNECTED GRAPHS

In this section, we study the structure of graphs (Refer Figure 9.11). A walk in a
graph G is an alternating sequence.

)0(,,,...,,,,: 12110 nvevevevW nnn of vertices and edges, beginning and
ending with vertices, such that .,...,2,1,1 nivve iii It is denoted by (v0 – vn)
walk. The number of edges (not necessarily distinct) is called the length of walk.
In graph G, uexeweveu ,,,,,,,, 4621 is a walk of length 4.

Fig. 9.11 Structure of Graph

A trail is a walk in which no edge is repeated and a path is a trail in which no vertex
is repeated. Thus, a path is a trail, but not every trail is a path. In the above graph
G, yeweuevewex ,,,,,,,,,, 72136 is a trail that is not a path, and

,,,,,,, 364 vewexeu is a path.
Result: Every (u – v) walk in a graph contains a (u – v) path.

Proof: Let W be a (u – v) walk in a graph G. If u = v, then w is the trail path, i.e.,
walk of length zero.

Suppose .,...,,,:and 210 vuuuuuWvu n If no vertex of G appears in
W more than once, then w itself is a (u – v) path. Otherwise, there are vertices of G
that occur in w twice or more. Let i and j be distinct positive integers such that i <
j with ui = uj. Then say 121 ,,...,, jjii uuuu are removed from w, and the resulting
sequence is (u – v) walk w1 whose length is less than that of w. (By induction
hypothesis, this w1 contains a (u – v) path and hence w has a (u – v) path). If no
vertex of G appears more than once in w1, then w1 is a (u – v) path. If not, apply the
above procedure, until we get a (u – v) path.
Cycle: A cycle is a walk. nvvv ,...,, 10 is a walk in which nvvn 0,3 and the
‘n’-vertices v1, v2,…,vn are distinct. We say that a (u – v) walk is closed if u = v
and open if .vu

Connection: Let u and v be vertices in a graph G. We say that u is connected to
v if G contains a (u – v) path. The graph G is connected, if u is connected to v for
every pair u, v of vertices of G.
Disconnection: A graph G is disconnected, if there exists two vertices u and v
for which there is no (u – v) path.

Graph Theory

NOTES

Self-Instructional
150 Material

Component: A subgraph H of a graph G is called a component of G, if H is a
maximal connected subgraph of G and component is denoted by).(G

Note: If ,1)(G then G is disconnected.

For example,

(i) (ii)

Fig. 9.12 Components of Graph

Graph (i) is connected and (ii) is disconnected.

Note that graph (ii) has 3 components.

Connectedness in Directed Graph
Strongly Connected: A directed graph is strongly connected if there is a path
from u to v and v to u, whenever u and v are vertices in the graph.

Weakly Connected: A directed graph is weakly connected, if there is a path
between any two vertices in the underlying undirected graph.

Unilaterally Connected: A directed graph is said to be unilaterally connected, if
in the two vertices u and v, there exists a directed path either from u to v or from
v to u.

For example,

Fig. 9.13 G1 is Weakly Fig. 9.14 G2 Unilaterally Fig. 9.15 G3 is Strongly
Connected Connected Connected

Check Your Progress

11. What do you mean by the subgraph?
12. State the walk of a graph.
13. Interpret the paths of a graph.
14. Analyse the connected graph.
15. Define the disconnected graph.
16. Illustrate the strongly and weakly connected graph.
17. Describe the unilaterally connected graph.

NOTES

Self-Instructional
Material 151

Graph Theory
9.8 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. A graph G, a triplet)),(),((GGEGV consisting of a non-empty set V(G) of
vertices, a set)(GE of edges, and a function G assigns to each edge, a
subset {u, v} of V(G) (u, v need not be distinct). If e is an edge and u, v
are vertices such that ,)(uveG then e is a line (edge) between u and v;
the vertices u and v are the end points of the edge e.

2. Complement of a Graph: The complement G of a graph G is a graph with
)()(GVGV and such that uv is an edge of G if and only if uv is not an

edge of G.
3. When (u, v) is an edge of the graph G with directed edges, u is said to be

adjacent to v and v is said to be adjacent from u. The vertex u is called the
initial vertex of (u, v) and v is called the terminal or end vertex of the edge
(u, v).

4. In a graph with directed edges, the in-degree of a vertex v denoted by d–

(v) is the number of edges with v as their terminal vertex. The out-degree of
v denoted by d+(v) is the number of edges with v as their initial vertex.

5. Finite Graph: A graph consisting of finite number of vertices and edges is
called as a finite graph. If the graph has n nodes and has no multiple edges or
graph loops (i.e., it is simple), it is a subgraph of the complete graph Kn.

6. A graph consisting of infinite number of vertices and edges is called as an
infinite graph.

7. The degree of a vertex v is the number of edges incident with that vertex. In
other words, the degree of a vertex is the number of edges, having that
vertex as an end point, and is denoted by d(v).

8. Solated Vertex: A vertex with degree zero is called an isolated vertex.
Pendant Vertex: A vertex with degree one is called a pendant vertex.

9. Minimum and Maximum Degrees: Let G be a graph. The minimum and
maximum degrees of G are, respectively, () and ()G G and given as:

() min { (); ()}
() max { (); ()}
G d v v V G
G d v v V G

10. Two graphs G and H are said to be isomorphic if there exists bijections
: () ()V G V H and : () ()E G E H such that iff

() iff (())G He uv e () ()u v .

Graph Theory

NOTES

Self-Instructional
152 Material

11. Let there be a graph given by G(V, E). If another graph (denoted as
H(V’, E’)) is obtained by deleting few vertices and edges then it is the
subgraph of G, if V’ in graph H contains all the terminal points of edges
in E’.

12. A walk is a sequence of vertices and edges starting from any vertex and
travelling through edges to a destination vertex, such that no edge appears
more than once.

13. A path is a sequence of consecutive edges in a graph and the length of the
path is the number of edges traversed. Path is thus a sequence of adjacent
edges, where the edges are traversed only once.

14. Let u and v be vertices in a graph G. We say that u is connected to v if G
contains a (u – v) path. The graph G is connected, if u is connected to v for
every pair u, v of vertices of G.

15. A graph G is disconnected, if there exists two vertices u and v for which
there is no (u – v) path.

16. Strongly Connected: A directed graph is strongly connected if there is a
path from u to v and v to u, whenever u and v are vertices in the graph.
Weakly Connected: A directed graph is weakly connected, if there is a path
between any two vertices in the underlying undirected graph.

17. Unilaterally Connected: A directed graph is said to be unilaterally connected,
if in the two vertices u and v, there exists a directed path either from u to v
or from v to u.

9.9 SUMMARY

A graph G, a triplet)),(),((GGEGV consisting of a non-empty set V(G)
of vertices, a set)(GE of edges, and a function G assigns to each edge, a
subset {u, v} of V(G) (u, v need not be distinct). If e is an edge and u, v
are vertices such that ,)(uveG then e is a line (edge) between u and v;
the vertices u and v are the end points of the edge e.
Complement of a Graph: The complement G of a graph G is a graph with

)()(GVGV and such that uv is an edge of G if and only if uv is not an
edge of G.
When (u, v) is an edge of the graph G with directed edges, u is said to be
adjacent to v and v is said to be adjacent from u. The vertex u is called
the initial vertex of (u, v) and v is called the terminal or end vertex of the
edge (u, v).
In a graph with directed edges, the in-degree of a vertex v denoted by d–

(v) is the number of edges with v as their terminal vertex. The out-degree of
v denoted by d+(v) is the number of edges with v as their initial vertex.

NOTES

Self-Instructional
Material 153

Graph TheoryFinite Graph: A graph consisting of finite number of vertices and edges is
called as a finite graph. If the graph has n nodes and has no multiple edges or
graph loops (i.e., it is simple), it is a subgraph of the complete graph Kn.
A graph consisting of infinite number of vertices and edges is called as an
infinite graph.
The degree of a vertex v is the number of edges incident with that vertex. In
other words, the degree of a vertex is the number of edges, having that
vertex as an end point, and is denoted by d(v).
Solated Vertex: A vertex with degree zero is called an isolated vertex.
Pendant Vertex: A vertex with degree one is called a pendant vertex.
Minimum and Maximum Degrees: Let G be a graph. The minimum and
maximum degrees of G are, respectively, () and ()G G and given as:

() min { (); ()}
() max { (); ()}
G d v v V G
G d v v V G

Two graphs G and H are said to be isomorphic if there exists bijections
: () ()V G V H and : () ()E G E H such that iff

() iff (())G He uv e () ()u v .

Let there be a graph given by G(V, E). If another graph (denoted as
H(V’, E’)) is obtained by deleting few vertices and edges then it is the
subgraph of G, if V’ in graph H contains all the terminal points of edges
in E’.
A walk is a sequence of vertices and edges starting from any vertex and
travelling through edges to a destination vertex, such that no edge appears
more than once.
A path is a sequence of consecutive edges in a graph and the length of the
path is the number of edges traversed. Path is thus a sequence of adjacent
edges, where the edges are traversed only once.
Let u and v be vertices in a graph G. We say that u is connected to v if G
contains a (u – v) path. The graph G is connected, if u is connected to v for
every pair u, v of vertices of G.
A graph G is disconnected, if there exists two vertices u and v for which
there is no (u – v) path.
Strongly Connected: A directed graph is strongly connected if there is a
path from u to v and v to u, whenever u and v are vertices in the graph.
Weakly Connected: A directed graph is weakly connected, if there is a path
between any two vertices in the underlying undirected graph.

Graph Theory

NOTES

Self-Instructional
154 Material

Unilaterally Connected: A directed graph is said to be unilaterally connected,
if in the two vertices u and v, there exists a directed path either from u to v
or from v to u.

9.10 KEY WORDS

Graph: A graph G, a triplet (V(G), E (G), G) consisting of a non-empty
set V(G) of vertices, a set E (G) of degree, and a function G assigns to
each edge, a subset {u,v} of V(G) (u,v need not be distinct).
Simple graph: A graph with no self-loop and parallel edges is known as
simple graph.
Graph with directed edge: When (u,v) is an edge of the graph G with
directed edges, u said to be adjacent to v and v is said to be adjacent from
u.
In-degree and out-degree: In a graph with directed edges, the in-degree
of a vertex v denoted by d- (v) is the number of edges with v as their
terminal vertex. The out degree of v denoted by d+ (v) is the number of
edges with v as their initial vertex.
Degree of vertex: The degree of a vertex v is the number of edges incident
with that vertex.
Isolated vertex: A vertex with degree zero is called an isolated vertex.
Pendant vertex: A vertex with degree one is called a pendant vertex.
Adjacent vertices: A pair of vertices that determine an edge are called
adjacent vertices.
k-regular graph: A graph G is k-regular or regular of degree k, if every
vertex of G has degree k.
Subgraph: Let there be a graph given by G(V,E). If another graph (denoted
as H(V’,E’)) is obtained by deleting few vertices and edges then it is the
subgraph of G, if V’ in graph H contains all the terminal points of edges in
E’.
Walk: A walk is a sequence of vertices and edges starting from any vertex
and travelling through edges to a destination vertex, such that no edge appears
more than once.
Path: A path is a sequence of consecutive edges in a graph and the length
of the path is the number of edges traversed.
Component: a sub-group H of a group G is called a component of G, if H
is a maximal connected subgroup of G and component is denoted by ω(G).

NOTES

Self-Instructional
Material 155

Graph Theory
9.11 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1. Give the definition of graph.
2. Elaborate on the complement of a graph.
3. Explain the graphs with directed edges.
4. Illustrate the in-degree and out-degree.
5. Define the finite and infinite graphs.
6. Analyse the term incidence in graph theory.
7. State the degree of a vertex.
8. Describe the isolated and pendent vertex.
9. Explain the isomorphism of graph.

10. Give the definition of subgraph.
11. Interpret the walk and path.
12. Define connected and disconnected graph.

Long-Answer Questions

1. Discuss briefly the graph with suitable examples.
2. Explain the graph with directed edges.
3. Analyse the finite and infinite graphs. Give appropriate examples.
4. Elaborate on the degree of vertex.
5. Describe briefly the isomorphism of a graph.
6. Illustrate the subgraphs with the help of examples.
7. Define the terms walks, paths, and circuits.
8. Interpret the connected and disconnected graphs.

9.12 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Graph Theory

NOTES

Self-Instructional
156 Material

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 157

Circuit Matrix

UNIT 10 CIRCUIT MATRIX

Structure
10.0 Introduction
10.1 Objectives
10.2 Matrix Representation of A Graph
10.3 Incidence Matrix
10.4 Circuit Matrix
10.5 Fundamental Circuit Matrix and rank of the Circuit Matrix
10.6 Cut Set Matrix
10.7 Adjacency Matrix

10.7.1 Adjacency Matrix
10.7.2 Path Matrix

10.8 Answers to Check Your Progress Questions
10.9 Summary

10.10 Key Words
10.11 Self Assessment Questions and Exercises
10.12 Further Readings

10.0 INTRODUCTION

Matrix structures include the incidence matrix, a matrix of 0’s and 1’s whose rows
represent vertices and whose columns represent edges, and the adjacency matrix,
in which both the rows and columns are indexed by vertices. In both cases a 1
indicates two adjacent objects and a 0 indicates two non-adjacent objects. The
degree matrix indicates the degree of vertices. The Laplacian matrix is a modified
form of the adjacency matrix that incorporates information about the degrees of
the vertices, and is useful in some calculations such as Kirchhoff’s theorem on the
number of spanning trees of a graph. The distance matrix, like the adjacency matrix,
has both its rows and columns indexed by vertices, but rather than containing a 0
or a 1 in each cell it contains the length of a shortest path between two vertices.
List structures include the edge list, an array of pairs of vertices, and the adjacency
list, which separately lists the neighbors of each vertex: Much like the edge list,
each vertex has a list of which vertices it is adjacent to.

Matrix structures on the other hand provide faster access for some
applications but can consume huge amounts of memory. Implementations of sparse
matrix structures that are efficient on modern parallel computer architectures are
an object of current investigation. An incidence matrix is a logical matrix that shows
the relationship between two classes of objects, usually called an incidence relation.
If the first class is X and the second is Y, the matrix has one row for each element
of X and one column for each element of Y. The entry in row x and column y is 1
if x and y are related (called incident in this context) and 0 if they are not.

Circuit Matrix

NOTES

Self-Instructional
158 Material

A cut is a partition of the vertices of a graph into two disjoint subsets. Any
cut determines a cut-set, the set of edges that have one endpoint in each subset of
the partition. These edges are said to cross the cut. In a connected graph, each
cut-set determines a unique cut, and in some cases cuts are identified with their
cut-sets rather than with their vertex partitions.

In this unit, you will study about the matrix representation of a graph,
incidence matrix, circuit matrix, fundamental circuit matrix and the rank of the
circuit matrix, cut set matrix, and adjacency matrix.

10.1 OBJECTIVES

After going through this unit, you will be able to:
Explain the matrix representation of a graph
Elaborate on the incidence matrix
Illustrate the circuit matrix
Understand the fundamental circuit matrix and rank of the circuit matrix
Comprehend the cut set matrix
Analyse the adjacency matrix

10.2 MATRIX REPRESENTATION OF A GRAPH

(a)

(b)

Fig. 10.1 Graph and its incidence matrix

NOTES

Self-Instructional
Material 159

Circuit MatrixSuch a matrix A is called the vertex-edge incidence matrix, or simply incidence
matrix. Matrix A for a graph G is sometimes also written as A(G). A graph and its
incidence matrix are shown in Refer Figure 10.1.

The incidence matrix contains only two elements, 0 and 1. Such a matrix is
called a binary matrix or a (0, Ti-matrix, Let us stipulate that these two elements
are from Galois field modulo 2. Given any geometric representation of a graph
without self-loops, we can readily write its incidence matrix.

Although matrices are customarily defined over a commutative ring with
identity, which need not be a field (such as the ring of integers), we have defined
matrix A over a field, GF(2), in keeping with our definition of the vector space
WG.

On the other hand, if we are given an incidence matrix A(G), we can construct
its geometric graph G without ambiguity. The incidence matrix and the geometric
graph contain the same informationt–they are simply two alternative ways of
representing the same (abstract) graph.
The following observations about the incidence matrix A can readily be made:

1. Since every edge is incident on exactly two vertices, each column of A has
exactly two 1’so

2. The number of 1’s in each row equals the degree of the corresponding
vertex.

3. A row with all O’s, therefore, represents an isolated vertex.
4. Parallel edges in a graph produce identical columns in its incidence matrix,

for example, columns 1 and 2 in Refer Figure 10.1.
5. If a graph G is disconnected and consists of two components gland g1 and

g2 the incidence matrix A(G) of graph G can be written in a block- diagonal
form as:

(10.1)
Where A(g1) and A(g2) are the incidence matrices of components g1 and
g2. This observation results from the fact that no edge in g1 is incident on
vertices of g2, and vice versa. Obviously, this remark is also true for a
disconnected graph with any number of components.

6. Permutation of any two rows or columns in an incidence matrix simply
corresponds to relabeling the vertices and edges of the same graph. This
observation leads us to Theorem 10.1.

Theorem 10.1: Two graphs G1 and G2 are isomorphic if and only if their incidence
matrices A(G1) and A(G2) differ only by permutations of rows and columns.
Rank of the Incidence Matrix: Each row in an incidence matrix A(G) may be
regarded as a vector over GF(2) in the vector space of graph G. Let the vector in
the first row be called A1, in the second row A2, and so on. Thus,

Circuit Matrix

NOTES

Self-Instructional
160 Material

(10.2)

Since there are exactly two 1’s in every column of A, the sum of all these
vectors is 0 (this being a modulo 2 sum of the corresponding entries). Thus vectors
A1, A2, ... , An are not linearly independent. Therefore, the rank of A is less than n;
that is, rank A n – 1.

Now consider the sum of any m of these n vectors (m n – 1). If the graph
is connected, A(G) cannot be partitioned, as in Equation (10.1), such that A(g1) is
with m rows and A(g2) with n–m rows. In other words, no m by m submatrix of
A(G) can be found, for m n –1, such that the modulo 2 sum of those m rows is
equal to zero.

Since there are only two constants 0 and I in this field, the additions of all
vectors taken m at a time for m = 1, 2, ... , n – 1 exhausts all possible linear
combinations of n – 1 row vectors. Thus we have just shown that no linear
combination of m row vectors of A (for m n – 1) can be equal to zero. Therefore,
the rank of A(G) must be at least n – 1.

Since the rank of A(G) is no more than n – 1 and is no less than n – l , it
must be exactly equal to n – 1. Hence Theorem 10.2.
Theorem 10.2: If A(G) is an incidence matrix of a connected graph G with n
vertices, the rank of A(G) is n – 1.

The argument leading to Theorem 10.2 can be extended to prove that the
rank of A(G) is n – k, if G is a disconnected graph with n vertices and k
components. This is the reason why the number n – k has been called the rank of
a graph with k components.

If we remove anyone row from the incidence matrix of a connected graph,
the remaining (n – 1) by e submatrix is of rank n – 1 (Theorem 10.2). In other
words, the remaining n – 1 row vectors are linearly independent. Thus we need
only n – 1 rows of an incidence matrix to specify the corresponding graph
completely, for n – 1 rows contain the same amount of information as the entire
matrix. (This is obvious, since given n – 1 rows we can easily reconstitute the
missing row, because each column in the matrix has exactly two I’s.)

Such an (n – 1) by e submatrix Af of A is called a reduced incidence
matrix. The vertex corresponding to the deleted row in Af is called the reference
vertex. Clearly, any vertex of a connected graph can be made the reference vertex.

Since a tree is a connected graph with n vertices and n – 1 edges, its
reduced incidence matrix is a square matrix of order and rank n – 1.

NOTES

Self-Instructional
Material 161

Circuit Matrix
10.3 INCIDENCE MATRIX

To any graph G, there corresponds a V × E matrix called the incidence matrix of
G and is denoted by I(G) = ,][EVija where,

1, if th edge is incident with th vertex
0, otherwiseij

j i
a

One more matrix associated with graph G is the adjacency matrix, e is
denoted by ,][)(VVijbGA

1, if th edge is incident with th vertex
0, otherwiseij

j i
a

Some authors used to define aij as the number of times (0, 1, and 2) vi and
ej are incident ; bij is the number of edges vi and vj.
For example,

01000
10000
11110
00101
00011

5

4

3

2

1

54321

v
v
v
v
v

eeeee

I(G), Incidence Matrix of G

01000
01000
11011
00101
00110

5

4

3

2

1

54321

v
v
v
v
v

vvvvv

A(G), Adjacency Matrix of G

Fig. 10.2 Matrix Representation of Graphs

Circuit Matrix

NOTES

Self-Instructional
162 Material

The adjacency matrix A(G) = [bij] of a directed graph is also a V × V
matrix,

1, if there is a directed edge from to
Where,

0, otherwise
i j

ij

v v
b

Similarly one can define the incidence matrix of a directed graph as shown in Figure
10.3.
For example,

00000
11000
10000
11000
01110

)(GA

Fig. 10.3 Incidence Matrix of a Directed Graph

Example 10.1: Write the adjacency matrix of the following graphs:

(i)

(ii)

(iii)

Solution: The adjency matrix of the graphs are as follows:

(i)

01000
00011
11000
00100
00010

)(GA

NOTES

Self-Instructional
Material 163

Circuit Matrix

(ii)

00001
10000
11001
10100
00010

)(GA

(iii)

011000
101000
110000
000001
000001
000110

)(GA

Notes: From Example 10.1 one can conclude that:

1. The diagonal entries of an adjacency matrix are all zero, iff the graph is a graph with no
self-loops.

2. If G is disconnected and it has two components, then its adjacency matrix A(G) can
be written as,

,)(0
0)()(

2
1

GA
GAGA G1 and G2 are components.

With the help of these matrices, one can verify whether the given graphs are
isomorphic or not.

Example 10.2: Verify if G and G1 are isomorphic.

Solution: First we shall write the adjacency matrices of G and G1.

010010
101000
010101
001010
100101
001010

)(GA

010100
101001
010100
101010
000101
010010

)(1GA

By keeping one matrix fixed, and by applying permutation of rows and
corresponding columns permutations on the unfixed matrix, yields the fixed one.
Then the given graphs are isomorphic.

Here, keep A(G) fixed.

Circuit Matrix

NOTES

Self-Instructional
164 Material

Also, G and G1 have 4 vertices of degree 2 and two vertices of degree 3.
Since d(v1) = 2 and v1 is not adjacent to any other vertex of degree 2, corresponding
vertex in G1 is either w4 or w6, the only vertices of degree 2 in G1 not adjacent to
a vertex of degree 2.

Without loss of generality, let us take .61 wv Suppose this 61 wv is not
ending with isomorphism, we have to take 41 wv .

Similarly, for other vertices of G, we can set

2 3 3 4 4 5 5 1; ; ; ;v w v w v w v v 6 2v v .

Thus we can modify A(G1) as
6 3 4 5 2 1

6

1 3

4

5

1

2

0 1 0 1 0 0
() 1 0 1 0 0 1

0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0

w w w w w w
w

A G w
w
w
w
w

1 1() () and hence .A G A G G G

10.4 CIRCUIT MATRIX

Let the number of different circuits in a graph G be q and the number of edges in
G be e. Then a circuit matrix B = [bij] of G is a q bye, (0, 1)-matrix defined as
follows:

b., = 1, if ith circuit includes jth edge, and
=0, otherwise.

To emphasize the fact that B is a circuit matrix of graph G, the circuit matrix
may also be written as B(G).

The graph in Figure 10.1(a) has four different circuits, {a, b}, {c, e, g},
{d,f, g}, and {c, d, f, e}. Therefore, its circuit matrix is a 4 by 8, (0, 1)-matrix as
shown:

(10.3)

The following observations can be made about a circuit matrix B(G) of a graph G:
1. A column of all zeros corresponds to a noncircuit edge (i.e., an edge that

does not belong to any circuit).

NOTES

Self-Instructional
Material 165

Circuit Matrix2. Each row of B(G) is a circuit vector.
3. Unlike the incidence matrix, a circuit matrix is capable of representing a

self-loop– the corresponding row will have a single I.
4. The number of I’s in a row is equal to the number of edges in the

corresponding circuit.
5. If graph G is separable (or disconnected) and consists of two blocks (or

components) gl and g2, the circuit matrix B(G) can be written in a block-
diagonal form as:

Where B(g1) and B(g2) are the circuit matrices of gland g1 and g2. This
observation results from the fact that circuits in g1 have no edges belonging
to g2, and vice versa.

6. Permutation of any two rows or columns in a circuit matrix simply
corresponds to relabeling the circuits and edges.

7. Two graphs G1 and G2 will have the same circuit matrix if and only if G1 and
G2 are 2-isomorphic. In other words, (unlike an incidence matrix) the circuit
matrix does not specify a graph completely. It only specifies the graph within
2-isomorphism. For instance, it can be easily verified that the two graphs
have the same circuit matrix, yet the graphs are not isomorphic.
An important theorem relating the incidence matrix and the circuit matrix of

a self-loop-free graph G is
Theorem 10.3: Let B and A be, respectively, the circuit matrix and the incidence
matrix (of a self-loop-free graph) whose columns are arranged using the same
order of edges. Then every row of B is orthogonal to every row A; that is,

A·BT = B·AT = 0 (mod 2), (10.4)
Where superscript T denotes the transposed matrix.
Proof: Consider a vertex and a circuit in the graph G. Either is in or it is
not. If is not in , there is no edge in the circuit that is incident on . On the
other hand, if is in , the number of those edges in the circuit that are incident
on is exactly two.

With this remark in mind, consider the ith row in A and the jth row in B.
Since the edges are arranged in the same order, the nonzero entries in the
corresponding positions occur only if the particular edge is incident on the ith
vertex and is also in the jth circuit.

If the ith vertex is not in the jth circuit, there is no such non-zero entry, and
the dot product of the two rows is zero. If the ith vertex is in the jth circuit, there
will be exactly two 1’s in the sum of the products of individual entries. Since
1 + 1 = 0 (mod 2), the dot product of the two arbitrary rows– one from A and the
other from B– is zero. Hence the theorem.

Circuit Matrix

NOTES

Self-Instructional
166 Material

As an example, let us multiply the incidence matrix and transposed circuit of
the graph in Figure 10.1(a), after making sure that the edges are in the same order
in both.

10.5 FUNDAMENTAL CIRCUIT MATRIX AND
RANK OF THE CIRCUIT MATRIX

A set of fundamental circuits (or basic circuits) with respect to any spanning tree in
a connected graph, are the only independent circuits in a graph. The rest of the
circuits can be obtained as ring sums (i.e., linear combinations) of these circuits.
Thus, in a circuit matrix, if we retain only those rows that correspond to a set of
fundamental circuits and remove all other rows, we would not lose any information.
The remaining rows can be reconstituted from the rows corresponding to the set
of fundamental circuits. For example, in the circuit matrix in Equation (10.3), the
fourth row is simply the mod 2 sum of the second and third rows.

A submatrix (of a circuit matrix) in which all rows correspond to a set of
fundamental circuits is called a fundamental circuit matrix Bf. A graph and its
fundamental circuit matrix with respect to a spanning tree (indicated by heavy
lines) are shown in Figure 10.4.

As in matrices A and B, permutations of rows (and/or of columns) do not
affect Bf: If n is the number of vertices and e the number of edges in a connected
graph, then Bf is an (e – n + 1) by e matrix, because the number of fundamental
circuits is e – n + 1, each fundamental circuit being produced by one chord.

Let us arrange the columns in Bf such that all the e – n + 1 chords correspond
to the first e – n + 1 columns. Furthermore, let us rearrange the rows such that
the first row corresponds to the fundamental circuit made by the chord in the
first column, the second row to the fundamental circuit made by the second,
and so on. This indeed is how the fundamental circuit matrix is arranged in Figure
10-4(b).

NOTES

Self-Instructional
Material 167

Circuit Matrix

(a)

(b)

Fig 10.4 Graph and its fundamental circuit matrix (with respect to the spanning tree
shown in heavy lines)

A matrix Bf thus arranged can be written as
Bf = [Iµ|Bt] (10.5)

Where Iµ is an identity matrix of order µ = e – n + 1, and B, is the remaining
µ by (n – 1) submatrix, corresponding to the branches of the spanning tree.

From Equation (10.5) it is clear that the
Rank of Bf = µ = e – n + 1.

Since Bf is a submatrix of the circuit matrix B, the
Rank of B e – n + 1.

In fact, we can prove Theorem 10.4.
Theorem 10.4: If B is a circuit matrix of a connected graph G with e edges and
n vertices, rank of B = e – n + 1.
Proof: If A is an incidence matrix of G, from Equation (10.4) we have

A· B = 0 (mod 2).

Therefore, according to Sylvester’s theorem (Appendix B),
rank of A + rank of B e;

That is,
rank of B e – rank of A.

Since rank of A = n – 1
We have rank of B e – n + 1.
But rank of B e – n + 1.
Therefore, we must have

Rank of B = e - n + 1.

Circuit Matrix

NOTES

Self-Instructional
168 Material

An Alternative Proof: Theorem 10.4 can also be proved by considering the
circuit subspace W in the vector space WG of a graph.

Every row in circuit matrix B is a vector in W , and since the rank of any
matrix is equal to the number of linearly independent rows (or columns) in the
matrix, we have.

Rank of matrix B = number of linearly independent rows in B;
but the number of linearly independent rows in B number of linearly independent
vectors in W , and the number of linearly independent vectors in W dimension of
W = µ. Therefore, rank of B e – n + 1. Since we already showed that rank of
B e – n + 1, Theorem 10.4 follows.

Note that in talking of spanning trees of a graph G it is necessary to assume
that G is connected. In the case of a disconnected graph, we would have to
consider a spanning forest and fundamental circuits with respect to this forest. It is
not difficult to show (considering component by component) that if G is a
disconnected graph with k components, e edges, and n vertices,

Rank of B = µ = e – n + k.

10.6 CUT SET MATRIX

Analogous to a circuit matrix, we can define a cut-set matrix C = [cij] in which
the rows correspond to the cut-sets and the columns to the edges of the graph, as
follows:

cij = 1, if ith cut-set contains jth edge, and
= 0, otherwise

For example, a graph and its cut-set matrix are shown in Figure 10.5.
The following remarks may be made about a cut-set matrix C(G) of a graph G.

1. As in the case of the incidence matrix, a permutation of rows or columns in
a cut-set matrix corresponds simply to a renaming of the cut-sets and edges,
respectively.

2. Each row in C(G) is a cut-set vector.
3. A column with all 0’s corresponds to an edge forming a self-loop.
4. Parallel edges produce identical columns in the cut-set matrix (e.g., first

two columns in Figure 10.5).
5. In a nonseparable graph, every set of edges incident on a vertex is a cut-

set. Therefore, every row of incidence matrix A(G) is included as a row in
the cut-set matrix C(G). In other words, for a nonseparable graph G, C(G)
contains A(G). For a separable graph, the incidence matrix of each block is
contained in the cut-set matrix. For example, the incidence matrix of the

NOTES

Self-Instructional
Material 169

Circuit Matrixblock {c, d, e, f, g} in Figure 10.5 is the 4 by 5 submatrix of C left after
deleting rows a, b, and h and columns 1, 2, 5, and 8.

6. In view of observation 5,
rank of C(G) rank of A(G).

Hence, for a connected graph of n vertices,
rank of C(G) n – 1. (10.6)

7. Since the number of edges common to a cut-set and a circuit is always
even, every row in C is orthogonal to every row in B, provided the edges in
both Band C are arranged in the same order. In other words,

B·CT = C. BT = 0 (mod 2). (10-7)

Fig. 10.5 Graph and its cut-set matrix.

On applying Sylvester’s theorem to Equation (10.7),
Rank of B + rank of C e,

And since for a connected graph
Rank of B = e – n + 1,
Rank of C n – 1. (10.8)

Combining Equations (10.6) and (10.8),
Rank of C = n – 1.

Thus we have the following important theorem for a connected graph G.

Circuit Matrix

NOTES

Self-Instructional
170 Material

Theorem 10.5: The rank of cut-set matrix C(G) is equal to the rank of the incidence
matrix A(G), which equals the rank of graph G.

As in the case of the circuit matrix, the cut-set matrix generally has many
redundant (or linearly dependent) rows. Therefore, it is convenient to define a
fundamental cut-set matrix, Cf, as follows:

A fundamental cut-set matrix Cf (of a connected graph G with e edges and
n vertices) is an (n – 1) by e submatrix of C such that the rows correspond to the
set of fundamental cut-sets with respect to some spanning tree.

As in the case of a fundamental circuit matrix, a fundamental cut-set matrix
Cf can also be partitioned into two submatrices, one of which is an identity matrix
In–I of order n – 1. That is,

Cf = [Cc| In–1] 10.9
Where the last n – 1 columns forming the identity matrix correspond to the n – 1
branches of the spanning tree, and the first e – n + 1 columns forming C, correspond
to the chords.

A connected graph and a fundamental cut-set matrix with respect to a
spanning tree (shown in heavy lines) are given in Figure 10.6.

Again note that in talking of cut-set matrices we have confined ourselves to
connected graphs only. This treatment can be generalized to include disconnected
graphs by considering one component at a time.

Fig. 10.6 Spanning tree in a graph and the corresponding fundamental cut-set matrix

NOTES

Self-Instructional
Material 171

Circuit Matrix
10.7 ADJACENCY MATRIX

The adjacency matrix, sometimes also called the connection matrix, of a simple
labeled graph is a matrix with rows and columns labeled by graph vertices, with a
1 or 0 in position (vi,vj) according to whether vi and vj are adjacent or not. For a
simple graph with no self-loops, the adjacency matrix must have 0s on the diagonal.
For an undirected graph, the adjacency matrix is symmetric.

In computers, a graph can be represented in two ways, viz., adjacency
matrix and adjacency list. Adjacency matrix uses arrays while adjacency list uses
linked lists in the representation of graphs.

Adjacency can be explained with the help of an undirected graph as shown
in Figure 10.7

Fig. 10.7 An Undirected Graph

In undirected graphs, the edges of the graph do not indicate the direction from one
vertex to another.

10.7.1 Adjacency Matrix

Adjacency matrix is an array of vertices of the graph. The matrix can be made for
both undirected as well as directed graphs. The adjacency matrix A for an undirected
graph G is formed according to the procedure described herein.

If there is an edge from vertex vi to vj in G, then the element aij in A is
marked as one, else it is marked as zero. Also, note that since it is an undirected
graph, aij is equivalent to aji. Therefore, if aij is one, then aji will also be one and
vice versa.

Table 10.1 shows the adjacency matrix representation for undirected graph.
Table 10.1 Adjacency Matrix Representation for Undirected Graph

 A B C D E

A 0 1 1 0 1

B 1 0 1 0 1

C 1 1 0 1 0

D 0 0 1 0 1

E 1 1 0 1 0

Circuit Matrix

NOTES

Self-Instructional
172 Material

The adjacency matrix for directed graph is defined in the same way as it is
defined in the undirected graph except for the fact that aij is not equivalent to aji.
This means that if aij is one, then aji will be zero. Table 10.2 shows the adjacency
matrix for the directed graph.

Table 10.2 Adjacency Matrix Representation for Directed Graph

 A B C D E

A 0 1 0 0 0

B 0 0 1 0 1

C 1 0 0 0 0

D 0 0 1 0 1

E 1 0 0 0 0

Adjacency matrix has several disadvantages associated with it. Some of them are
as follows:

For a graph with ‘n’ vertices, an adjacency matrix requires n2 elements to
represent it.
For a directed graph with n vertices, n2–e edges are zero. Thus, for a graph
with few edges, the matrix becomes sparse. This means that matrix for a
graph with few edges carries a lot of zeros.
An adjacency matrix cannot represent parallel edges.

Adjacency List

To avoid the disadvantages of adjacency matrix, adjacency lists are used. They
are especially efficient in case of sparse matrix. They make use of the linked lists
of adjacent vertices for all vertices V in graph G. For example, for the undirected
graph shown in Figure 10.8, the adjacency list for vertex A is shown in Figure
10.9.

Fig. 10.8 Adjacency List for Vertex A

This is because, the vertices adjacent to A are B, C and E. Figure 10.9
shows the complete adjacency list for the graph used in adjacency matrix.

NOTES

Self-Instructional
Material 173

Circuit Matrix

Fig. 10.9 The Complete Adjacency List

This adjacency list representation uses less memory. However, if the number
of edges and vertices increases, the adjacency list becomes inefficient, i.e., it uses
more memory as the overhead of maintaining pointers increases. In C language,
adjacency list is represented by an array of pointers, where each pointer points to
a linked list of vertices that are adjacent to a particular vertex.

10.7.2 Path Matrix

Path matrix represents the path of certain length. To show adjacent nodes in a
simple directed graph we use adjacency matrix. For example, consider the following
simple directed graph G as shown in Figure 10.10.

Fig. 10.10 Simple Directed Graph G

Following Table 10.3 represents the adjacency matrix for this simple directed
graph G:

Table 10.3 Adjacency Matrix for Simple Directed Graph G

 A B C D E
A 0 0 1 1 0
B 0 0 1 0 0
C 0 0 0 1 1
D 0 0 0 0 1
E 0 0 0 1 0

The adjacency matrix describes the relationships between the adjacent nodes.
Besides these, other relationships also exist between nodes. For example, if we

Circuit Matrix

NOTES

Self-Instructional
174 Material

consider the three nodes B, C and E then we see that <B, C> = 1 and also <C,
E> = 1. Hence there is a link directed from B to E through C. Thus in order to
show such relationship we use the concept of path matrix. To establish a relationship
between the nodes B, C and E only two nodes were used and hence we say that
it is a path of length 2. Considering all such paths of length 2 we can represent
them using a path matrix of length 2 as shown below:

 A B C D E
A 0 0 0 1 1
B 0 0 0 1 1
C 0 0 0 1 1
D 0 0 0 1 0
E 0 0 0 0 1

Moving on further, consider all paths of length 3 in the above graph to
obtain the following path matrix of length 3:

 A B C D E
A 0 0 0 1 1
B 0 0 0 1 1
C 0 0 0 1 1
D 0 0 0 0 1
E 0 0 0 1 0

In this way, we can define path matrices of certain lengths to show paths
among nodes in a graph if they exist.

Check Your Progress

1. Explain the matrix representation of graph.
2. Define incidence matrix.
3. Elaborate on the circuit matrix.
4. Analyse the fundamental circuit matrix.
5. Illustrate the cut-set matrix.
6. Interpret the adjacency matrix.
7. Why adjacency lists are used?
8. What do you understand by the path matrix?

10.8 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The incidence matrix contains only two elements, 0 and 1. Such a matrix is
called a binary matrix or a (0, Ti-matrix, Let us stipulate that these two

NOTES

Self-Instructional
Material 175

Circuit Matrixelements are from Galois field modulo 2. Given any geometric representation
of a graph without self-loops, we can readily write its incidence matrix.

2. To any graph G, there corresponds a V × E matrix called the incidence
matrix of G and is denoted by I(G) = ,][EVija where,

1, if th edge is incident with th vertex
0, otherwiseij

j i
a

3. Let the number of different circuits in a graph G be q and the number of
edges in G be e. Then a circuit matrix B = [bij] of G is a q bye, (0, 1)-matrix
defined as follows:

b., = 1, if ith circuit includes jth edge, and
=0, otherwise.

4. A set of fundamental circuits (or basic circuits) with respect to any spanning
tree in a connected graph, are the only independent circuits in a graph. The
rest of the circuits can be obtained as ring sums (i.e., linear combinations) of
these circuits. Thus, in a circuit matrix, if we retain only those rows that
correspond to a set of fundamental circuits and remove all other rows, we
would not lose any information.

5. Analogous to a circuit matrix, we can define a cut-set matrix C = [cij] in
which the rows correspond to the cut-sets and the columns to the edges of
the graph, as follows:

cij = 1, if ith cut-set contains jth edge, and
= 0, otherwise

6. The adjacency matrix, sometimes also called the connection matrix, of a
simple labeled graph is a matrix with rows and columns labeled by graph
vertices, with a 1 or 0 in position (vi,vj) according to whether vi and vj are
adjacent or not. For a simple graph with no self-loops, the adjacency matrix
must have 0s on the diagonal. For an undirected graph, the adjacency matrix
is symmetric.

7. To avoid the disadvantages of adjacency matrix, adjacency lists are used.
They are especially efficient in case of sparse matrix. They make use of the
linked lists of adjacent vertices for all vertices V in graph G.

8. Path matrix represents the path of certain length. To show adjacent nodes
in a simple directed graph we use adjacency matrix.

10.9 SUMMARY

The incidence matrix contains only two elements, 0 and 1. Such a matrix is
called a binary matrix or a (0, Ti-matrix, Let us stipulate that these two

Circuit Matrix

NOTES

Self-Instructional
176 Material

elements are from Galois field modulo 2. Given any geometric representation
of a graph without self-loops, we can readily write its incidence matrix.
To any graph G, there corresponds a V × E matrix called the incidence
matrix of G and is denoted by I(G) = ,][EVija where,

1, if th edge is incident with th vertex
0, otherwiseij

j i
a

Let the number of different circuits in a graph G be q and the number of
edges in G be e. Then a circuit matrix B = [bij] of G is a q bye, (0, 1)-matrix
defined as follows:

b., = 1, if ith circuit includes jth edge, and
=0, otherwise.

A set of fundamental circuits (or basic circuits) with respect to any spanning
tree in a connected graph, are the only independent circuits in a graph. The
rest of the circuits can be obtained as ring sums (i.e., linear combinations)
of these circuits. Thus, in a circuit matrix, if we retain only those rows that
correspond to a set of fundamental circuits and remove all other rows, we
would not lose any information.
Analogous to a circuit matrix, we can define a cut-set matrix C = [cij] in
which the rows correspond to the cut-sets and the columns to the edges of
the graph, as follows:

cij = 1, if ith cut-set contains jth edge, and
= 0, otherwise

The adjacency matrix, sometimes also called the connection matrix, of a
simple labeled graph is a matrix with rows and columns labeled by graph
vertices, with a 1 or 0 in position (vi,vj) according to whether vi and vj are
adjacent or not. For a simple graph with no self-loops, the adjacency matrix
must have 0s on the diagonal. For an undirected graph, the adjacency matrix
is symmetric.
To avoid the disadvantages of adjacency matrix, adjacency lists are used.
They are especially efficient in case of sparse matrix. They make use of the
linked lists of adjacent vertices for all vertices V in graph G.
Path matrix represents the path of certain length. To show adjacent nodes
in a simple directed graph we use adjacency matrix.

10.10 KEY WORDS

Incidence matrix: To any graph G, there corresponds a V× E matrix
called the incidence matrix of G and is denoted by I(G)=[aij]V× E.

NOTES

Self-Instructional
Material 177

Circuit MatrixCircuit matrix: Let the number of different circuits in a graph G be q and
the number of edges in G be e. Then a circuit matrix B = [bij] of G is a q by
e, (0,1).
Fundamental circuit matrix: A submatrix (of a circuit matrix) in which all
rows correspond to asset of fundamental circuits is called a fundamental
circuit matrix Bf.
Cut-set matrix: Analogous to a circuit matrix, we can define a cut-set
matrix C=[cij] in which the rows correspond to the cut-sets and the column
to the edges of the graph.
Adjacency matrix: Adjacency matrix is an array of vertices of the graph.
The matrix can be made for both undirected as well as directed graphs.
Adjacency lists: To avoid the disadvantages of adjacency matrix,
adjacency lists are used. They are especially efficient in case of sparse matrix.
Path matrix: Path matrix represents the path of certain length. To show
adjacency nodes in a simple directed graph we use adjacency matrix.

10.11 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define matrix representation of a graph.
2. Explain the incidence matrix.
3. Analyse the circuit matrix.
4. Elaborate on the fundamental circuit matrix.
5. Interpret the cut-set matrix.
6. Illustrate the adjacency matrix.
7. State the path matrix.

Long-Answer Questions

1. Describe the matrix representation of a graph.
2. Briefly discuss the incidence matrix with the help of example.
3. Analyse the circuit matrix.
4. Interpret the fundamental circuit matrix. Give appropriate example.
5. Elaborate on the cut-set matrix.
6. Define the adjacency matrix.
7. Explain in brief the path matrix.

Circuit Matrix

NOTES

Self-Instructional
178 Material

10.12 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 179

Chromatic Numbers

UNIT 11 CHROMATIC NUMBERS

Structure
11.0 Introduction
11.1 Objectives
11.2 Chromatic Numbers
11.3 Chromatic Partitioning
11.4 Chromatic Polynomial

11.4.1 Properties of the Chromatic Polynomial
11.4.2 Algorithms for the Chromatic Polynomial

11.5 Answers to Check Your Progress Questions
11.6 Summary
11.7 Key Words
11.8 Self Assessment Questions and Exercises
11.9 Further Readings

11.0 INTRODUCTION

The smallest number of colours needed to colour a graph G is called its chromatic
number, and is often denoted χ(G). Sometimes γ(G) is used, since χ(G) is also
used to denote the Euler characteristic of a graph. A graph that can be assigned a
(proper) k-colouring is k-colourable, and it is k-chromatic if its chromatic number
is exactly k. A subset of vertices assigned to the same colour is called a colour
class, every such class forms an independent set. Thus, a k-colouring is the same
as a partition of the vertex set into k independent sets, and the terms k-partite and
k-colourable have the same meaning.

The first results about graph colouring deal almost exclusively with planar
graphs in the form of the colouring of maps. While trying to colour a map of the
counties of England, Francis Guthrie postulated the four colour conjecture, noting
that four colours were sufficient to colour the map so that no regions sharing a
common border received the same colour. Guthrie’s brother passed on the question
to his mathematics teacher Augustus de Morgan at University College, who
mentioned it in a letter to William Hamilton in 1852. Arthur Cayley raised the
problem at a meeting of the London Mathematical Society in 1879. The same
year, Alfred Kempe published a paper that claimed to establish the result, and for
a decade the four colour problem was considered solved. For his accomplishment
Kempe was elected a Fellow of the Royal Society and later President of the
London Mathematical Society.

The chromatic polynomial counts the number of ways a graph can be
coloured using no more than a given number of colours. For example, using three
colours, the graph in the adjacent image can be coloured in 12 ways. With only
two colours, it cannot be coloured at all. With four colours, it can be coloured in

Chromatic Numbers

NOTES

Self-Instructional
180 Material

24 + 4.12 = 72 ways: using all four colours, there are 4! = 24 valid colourings
(every assignment of four colours to any 4-vertex graph is a proper colouring);
and for every choice of three of the four colours, there are 12 valid 3-colorings.

In this unit, you will study about the chromatic numbers, chromatic
partitioning, and chromatic polynomial.

11.1 OBJECTIVES

After going through this unit, you will be able to:
Understand the chromatic number
Explain the chromatic partitioning
Analyse the chromatic polynomial

11.2 CHROMATIC NUMBERS

A graph G of n vertices can be properly coloured in many different ways using a
sufficiently large number of colours. This property of a graph is expressed by a
polynomial. This polynomial can be referred to as chromatic polynomial.

The value of chromatic polynomial is given by,

l
cP

n

i
in .

1

Where, Ci is the different ways of properly colouring G using exactly l colours

out of colours in
i
. different ways.

Theorem 11.1: A graph of n vertices is a complete graph if and only if its
chromatic polynomial is,

1....21 nPn

Proof: Let us use colours, then there are different ways of colouring any
selected vertex of a graph. A second vertex can be coloured properly in exactly
(–1) ways, the third in (–2) ways, the fourth in (–3) ways, etc., and nth in
(– n+1) ways iff every vertex is adjacent to every other. That is, if and only if the
graph is complete.
Note: An n - vertex graph is a tree if its chromatic polynomial

pn () = (–1)n – 1.

NOTES

Self-Instructional
Material 181

Chromatic Numbers
11.3 CHROMATIC PARTITIONING

Let (G) be the chromatic number of a graph G = (V, E), and k 1 be an integer.
The general chromatic number k(G) of G is the minimum order of a partition P of
V such that each set in P induces a subgraph H with (H) k.

Let G = (V, E) be a graph. For a property P, let n(P) be the minimum
number of sets into which V can be partitioned so that each set induces a subgraph
H with property P. The number n(P) specifies various properties P. For example,
suppose P1, P´ and P´´ be the properties defined as follows:

P1 : H is totally disconnected or irivial.
P´ : H is a forest
P´´ : H is k-degenerate.
Then n(P1) is the chromatic number of G, n(P´) is the point arboricity of G

and n(P´´) is the point partition number.
Let k 1 be an integer, and (G) denote the chromatic number of G. We

will define number n(Pk) where Pk is the property: (H) k.
A set S V is a Pk-set if (S) k, where S is the subgraph of G

induced by S. A partition {V1, V2, ..., Vn} of V is a Pk-partition if each Vi is a Pk-
set. A Pk-coloring of G is defined as the coloring of the vertices of G such that the
set of all vertices receiving the same color is a Pk-set. A Pk-coloring which uses r
colors is defined as (k, r)-coloring. If there exists a (k, r)-coloring of G for some
r n, then G is said to be (k, n)-colorable.

The chromatic partition number k(G) of G is the minumum number of
colors required in a Pk-coloring of G. If k(g) = n, then G is said to be (k, n)-
chromatic.

Clearly, 1(G) = (G) and k(g) = 1 for all k (G). Thus, if G is any
bipartite graph, n(G) = 1 for all n 2, and for an odd cycle C , 2(C) = 2 and

n(C) = 1, for all n 3. For any graph G, k(G) i(G) when j K.
For a real number r, let [r] and {r}, respectively, denote the greatest integer

not exceeding r, and the least integer not less than r.
Following are some significant proposition that define chromatic partitioning

of a graph.
Proposition 1: For the complete graph Kp

(1)
Corollary: For any graph G of order p

(2)

Chromatic Numbers

NOTES

Self-Instructional
182 Material

Proposition 2: For any graph G

(3)

Proof: We establish only the first half in Equation (3), the second half obvious.
Let {V1, V2, ..., Vr} be a k(G)-partition of V and (Vi) = Ti. Since ti K, we
have

(G) ti k k(g).
Let 0 = 0(G) be the independence number of G, and Mk be the maxmimum

number of points in a Pk-set of G.
Proposition 3: For any graph G of order P

(4)

(5)

Proof: Let {V1, V2, ..., Vn} be a minimum Pk-partition of V(G). Then n = k(G)
and |Vi| Mk, for 1 i n. Therefore,

P = G |Vi| nMk = k(G)Mk.
The lower bound in Equation (4) holds. To establish the upper bound in Equation
(4), let S V be a Pk-set with |S| = Mk. Clearly, K(G – S) k(G) –1. Since
G – S has p – Mk points, we have

Therefore, k(G) + 1, and Equation (4) follows. To establish Equation
(5), let Vi = Gi, and |Vi| = pi. It is well known that,

Since (Gi) k, we have
Pi 0(Gi)k 0(G)k, and
p = pi k 0(g) k(g),

This establishes the lower bound in Equation (5). Similarly, we can establish
the upper bound in Equation (5).

11.4 CHROMATIC POLYNOMIAL

The ‘Chromatic Polynomial’ is a graph polynomial studied in algebraic graph
theory, a branch of mathematics. It counts the number of graph colourings as a
function of the number of colours and was originally defined by George David

NOTES

Self-Instructional
Material 183

Chromatic NumbersBirkhoff to study the four colour problem. It was generalised to the Tutte polynomial
by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical
physics.

George David Birkhoff introduced the concept of chromatic polynomial in
1912, defining it only for planar graphs, in an attempt to prove the four colour
theorem. If P(G, k) denotes the number of proper colourings of G with k colours
then one could establish the four colour theorem by showing P(G, 4) > 0 for all
planar graphs G. In this manner, he hoped to apply the powerful tools of analysis
and algebra for studying the roots of polynomials to the combinatorial colouring
problem.

Hassler Whitney generalised Birkhoff’s polynomial from the planar case to
general graphs in 1932. In 1968, Read asked which polynomials are the chromatic
polynomials of some graph, a question that remains open, and introduced the
concept of chromatically equivalent graphs. Today, chromatic polynomials are
one of the central objects of algebraic graph theory.

Following Figure 11.1 illustrates the all non-isomorphic graphs on 3 vertices
and their chromatic polynomials, clockwise from the top. The independent 3-set:
k3, an edge and a single vertex: k2 (k 1), the 3-path: k (k 1)2 and the 3-clique:
k (k 1) (k 2).

Fig. 11.1 All Non-Isomorphic Graphs on 3 Vertices and Their Chromatic Polynomials

Chromatic Numbers

NOTES

Self-Instructional
184 Material

Definition
For a graph G, P(G, k) counts the number of its (proper) vertex k-colourings.
Other commonly used notations include PG(k), G(k), or G(k). There is a unique
polynomial P(G, x) which evaluated at any integer k 0 coincides with P(G, k); it
is called the ‘Chromatic Polynomial of G’.

For example, to colour the path graph P3 on 3 vertices with k colours, one
may choose any of the k colours for the first vertex, any of the (k 1) remaining
colours for the second vertex, and lastly for the third vertex, any of the colours
that are different from the second vertex’s choice.

Therefore, P (P3, k) = k . (k 1) . (k 1) is the number of k-colourings of
P3. For a variable x (not necessarily integer), we thus have P (P3, x) = x (x 1)2

= x3 2x2 + x. Colourings which differ only by permuting colours or by
automorphisms of G are still counted as different.

Following Figure 11.2 illustrates all the proper vertex colourings of vertex
graphs with 3 vertices using k colours for k = 0, 1, 2, 3. The chromatic polynomial
of each graph interpolates through the number of proper colourings.

Fig. 11.2 All Proper Vertex Colourings of Vertex Graphs with 3 Vertices
using k Colours for k = 0, 1, 2, 3

NOTES

Self-Instructional
Material 185

Chromatic NumbersDeletion–Contraction Formula
The fact that the number of k-colourings is a polynomial in k follows from a
recurrence relation called the ‘Deletion–Contraction Recurrence’ or
‘Fundamental Reduction Theorem’. It is based on edge contraction, for a pair
of vertices u and v the graph G/uv is obtained by merging the two vertices and
removing any edges between them. If u and v are adjacent in G, then let G uv
denote the graph obtained by removing the edge uv. At that point the numbers of
k-colourings of these graphs satisfy:

 P(G, k) = P(G uv, k) P(G/uv, k)
Equivalently, if u and v are not adjacent in G and G + uv is the graph with

the edge uv added, then,
P(G, k) = P(G + uv, k) + P(G/uv, k)

This follows from the observation that every k-colouring of G either gives
different colours to u and v, or the similar colours. In the first case this gives a
(proper) k-colouring of G + uv, while in the second case it gives a colouring of
G/uv. Conversely, every k-colouring of G can be uniquely obtained from a
k-colouring of G + uv or G/uv, if u and v are not adjacent in G.

The chromatic polynomial can hence be recursively defined as,
P(G, x) = xn for the edgeless graph on n vertices.
P(G, x) = P(G uv, x) P(G/uv, x) for a graph G with an edge uv

(arbitrarily chosen).
Since the number of k-colourings of the edgeless graph is certainly kn, it

follows by induction on the number of edges that for all G, the polynomial P(G, x)
coincides with the number of k-colourings at every integer point x = k. In particular,
the chromatic polynomial is the unique interpolating polynomial of degree at most
n through the points,

 {(0, P (G, 0)), (1, P (G, 1)),, (n, P (G, n))}
Tutte’s curiosity about which other graph invariants satisfied such recurrences

led him to discover a bivariate generalization of the chromatic polynomial, the
Tutte polynomial TG (x, y).
Chromatic Polynomials for Certain Graphs
Following Table 11.1 shows some examples of chromatic polynomials for certain
graphs.

Chromatic Numbers

NOTES

Self-Instructional
186 Material

Table 11.1 Chromatic Polynomials for Certain Graphs

11.4.1 Properties of the Chromatic Polynomial

For fixed G on n vertices, the chromatic polynomial P(G, x) is a monic polynomial
of degree exactly n, with integer coefficients.

The chromatic polynomial includes at least as much information about the
colourability of G as does the chromatic number. Definitely, the chromatic number
is the smallest positive integer that is not a zero of the chromatic polynomial,

(G) = min {k : P(G, k) > 0}
The polynomial evaluated at 1, that is P(G, 1), yields (1)|V(G)| times the

number of acyclic orientations of G.
The derivative evaluated at 1, P (G, 1) equals the chromatic invariant (G)

up to sign.
If G has n vertices and c components G1, ,Gc, then,

The coefficients of x0,, xc 1 are zeroes.
The coefficients of xc, . … . ., xn are all non-zero and alternate in signs.
The coefficient of xn is 1 (the polynomial is monic).
The coefficient of xn 1 is |E(G)|.
The coefficient of x1 is (1)n 1 times the number of acyclic orientations
that have a unique sink, at a specified, arbitrarily chosen vertex.
The absolute values of coefficients of every chromatic polynomial form
a log-concave sequence.
P (G, x) = P (G1, x) P (G2, x),, P (Gc, x).

The last property is generalized by the fact that if G is a k-clique-sum of G1
and G2, i.e., a graph obtained by gluing the two at a clique on k vertices, then

A graph G with n vertices is a tree if and only if,
P (G, x) = x (x 1)n 1

NOTES

Self-Instructional
Material 187

Chromatic NumbersChromatic Equivalence

Two graphs are said to be chromatically equivalent if they have the same chromatic
polynomial. Isomorphic graphs have the same chromatic polynomial, but non-
isomorphic graphs can be chromatically equivalent. For example, all trees on n
vertices have the same chromatic polynomial. In particular, (x 1)3 x is the chromatic
polynomial of both the claw graph and the path graph on 4 vertices. Following
Figure 11.3 illustrates the three graphs with a chromatic polynomial equal to (x 2)
(x 1)3 x.

Fig. 11.3 Three Graphs with a Chromatic Polynomial Equal To (x-2) (x-1)3 x

A graph is chromatically unique if it is determined by its chromatic polynomial,
up to isomorphism. In other words, if G is chromatically unique, then P (G, x) = P
(H, x) would imply that G and H are isomorphic. All cycle graphs are chromatically
unique.
Chromatic Roots
A root or zero of a chromatic polynomial, called a ‘Chromatic Root’, is a value
x where P (G, x) = 0. Chromatic roots have been very well studied, in fact,
Birkhoff’s original motivation for defining the chromatic polynomial was to show
that for planar graphs, P (G, x) > 0 for x 4. This would have established the four
colour theorem.

No graph can be 0-coloured, so 0 is always a chromatic root. Only edgeless
graphs can be 1-coloured, so 1 is a chromatic root of every graph with at least
one edge. On the other hand, except for these two points, no graph can have a
chromatic root at a real number smaller than or equal to 32/27. A result of Tutte
connects the golden ratio (phi) with the study of chromatic roots, showing that
chromatic roots exist very close to 2: If Gn is a planar triangulation of a sphere
then,

P (Gn, 2) 5 n

While the real line thus has large parts that contain no chromatic roots for
any graph, every point in the complex plane is arbitrarily close to a chromatic root

Chromatic Numbers

NOTES

Self-Instructional
188 Material

in the sense that there exists an infinite family of graphs whose chromatic roots are
dense in the complex plane.

Categorification
The chromatic polynomial is categorified by a homology theory closely related

to Khovanov homology.

11.4.2 Algorithms for the Chromatic Polynomial

Computational problems associated with the chromatic polynomial include the
following:
Problem 1: Finding the chromatic polynomial P (G, x) of a given graph G.
Problem 2: Evaluating P (G, x) at a fixed point x for given graph G.
The first problem is considered as more general and universal because if we know
and identify the coefficients of P (G, x) then we can evaluate or compute it at any
point in polynomial time because the degree is n. The difficulty of the second type
of problem depends strongly on the value of x and has been intensively studied in
computational complexity. When x is a natural number, then this problem is normally
viewed as computing the number of x-colourings of a given graph. For example,
this includes the problem #3-Colouring of counting the number of 3-Colourings,
a canonical problem in the study of complexity of counting, complete for the counting
class #P.
Efficient Algorithms
For some basic graph classes, closed formulas for the chromatic polynomial are
known. For instance this is true for trees and cliques, as listed in the Table 8.1.

Polynomial time algorithms are known for computing the chromatic
polynomial for wider classes of graphs, including chordal graphs and graphs of
bounded clique-width. The latter class includes cographs and graphs of bounded
tree-width, such as outerplanar graphs. In graph theory, an outerplanar graph is a
graph that has a planar drawing for which all vertices belong to the outer face of
the drawing.
Deletion–Contraction Algorithm
The deletion-contraction recurrence gives a method of computing the chromatic
polynomial, called the deletion–contraction algorithm. In the first form (with a minus
‘ ’), the recurrence terminates in a collection of empty graphs. In the second form
(with a plus ‘+’), it terminates in a collection of complete graphs. This forms the
basis of many algorithms for graph colouring. The worst case running time of
either formula satisfies the same recurrence relation as the Fibonacci numbers, so
in the worst case, the algorithm runs in time within a polynomial factor of,

NOTES

Self-Instructional
Material 189

Chromatic NumbersThis is on a graph with n vertices and m edges. The analysis can be improved
to within a polynomial factor of the number t (G) of spanning trees of the input
graph. In practice, branch and bound strategies and graph isomorphism rejection
are employed to avoid some recursive calls, the running time depends on the
heuristic used to pick the vertex pair.
Cube Method
There is a natural geometric perspective on graph colourings by observing that, as
an assignment of natural numbers to each vertex, a graph colouring is a vector in
the integer lattice. Since two vertices iand jbeing given the same colour is equivalent
to the ith and jth coordinate in the colouring vector being equal, each edge can be
associated with a hyperplane of the form,

 {x Rd : xi = xj}
The collection of such hyperplanes for a given graph is called its graphic

arrangement. The proper colourings of a graph are those lattice points which avoid
forbidden hyperplanes. Restricting to a set of k colours, the lattice points are
contained in the cube [0, k]n. In this context the chromatic polynomial counts the
number of lattice points in the [0, k]-cube that avoid the graphic arrangement.
Computational Complexity
The problem of computing the number of 3-Colorings of a given graph is a canonical
example of a #P-Complete problem, so the problem of computing the coefficients
of the chromatic polynomial is #P-Hard. In the same way, by evaluating P (G, 3)
for given G is #P-Complete. Alternatively, for k = 0, 1, 2 it is easy to compute P
(G, k), so the corresponding problems are polynomial-time computable. For
integers k > 3 the problem is #P-Hard, which is established similar to the case k =
3. Essentially, it is known that P (G, x) is #P-hard for all x including negative
integers and even all complex numbers except for the three easy points. Thus,
from the perspective of #P-Hardness, the complexity of computing the chromatic
polynomial is completely understood.

In the expansion,
P (G, x) = a1x + a2x2 + + anxn

The coefficient an is always equal to 1, and several other properties of the
coefficients are known. However, the computational problem of computing ar for
a fixed r 1 and a given graph G is #P-Hard, even for bipartite planar graphs.

No approximation algorithms for computing P (G, x) are known for any x
except for the three easy points. At the integer points k = 3, 4,, the
corresponding decision problem of deciding if a given graph can be k-coloured is
NP-Hard. Such problems cannot be approximated to any multiplicative factor by
a bounded-error probabilistic algorithm unless NP = RP, because any multiplicative
approximation would distinguish the values 0 and 1, effectively solving the decision
version in bounded-error probabilistic polynomial time. In particular, under the
same assumption, this rules out the possibility of a Fully Polynomial time

Chromatic Numbers

NOTES

Self-Instructional
190 Material

Randomised Approximation Scheme (FPRAS). For other points, more complicated
arguments are required, and the question is the focus of active research. As of
today, it is known that there is no FPRAS for computing P (G, x) for any x > 2,
unless NP = RP holds.

Check Your Progress

1. Explain the chromatic numbers.
2. Elaborate on the chromatic partitioning.
3. Interpret the chromatic polynomial.
4. Define the deletion-contraction formula.
5. Analyse the properties of the chromatic polynomial.
6. What do you understand by the chromatic equivalence?
7. State the chromatic roots.

11.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A graph G of n vertices can be properly coloured in many different ways
using a sufficiently large number of colours. This property of a graph is
expressed by a polynomial. This polynomial can be referred to as chromatic
polynomial.

2. Let G = (V, E) be a graph. For a property P, let n(P) be the minimum
number of sets into which V can be partitioned so that each set induces a
subgraph H with property P. The number n(P) specifies various properties
P.

3. The ‘Chromatic Polynomial’ is a graph polynomial studied in algebraic graph
theory, a branch of mathematics. It counts the number of graph colourings
as a function of the number of colours and was originally defined by George
David Birkhoff to study the four colour problem.

4. The fact that the number of k-colourings is a polynomial in k follows from a
recurrence relation called the ‘Deletion–Contraction Recurrence’ or
‘Fundamental Reduction Theorem’. It is based on edge contraction, for a
pair of vertices u and v the graph G/uv is obtained by merging the two
vertices and removing any edges between them.

5. The chromatic polynomial includes at least as much information about the
colourability of G as does the chromatic number. Definitely, the chromatic
number is the smallest positive integer that is not a zero of the chromatic
polynomial,

(G) = min {k : P(G, k) > 0}

NOTES

Self-Instructional
Material 191

Chromatic Numbers6. Two graphs are said to be chromatically equivalent if they have the same
chromatic polynomial. Isomorphic graphs have the same chromatic
polynomial, but non-isomorphic graphs can be chromatically equivalent.

7. A root or zero of a chromatic polynomial, called a ‘Chromatic Root’, is a
value x where P (G, x) = 0. Chromatic roots have been very well studied,
in fact, Birkhoff’s original motivation for defining the chromatic polynomial
was to show that for planar graphs, P (G, x) > 0 for x 4. This would have
established the four colour theorem.

11.6 SUMMARY

A graph G of n vertices can be properly coloured in many different ways
using a sufficiently large number of colours. This property of a graph is
expressed by a polynomial. This polynomial can be referred to as chromatic
polynomial.
Let G = (V, E) be a graph. For a property P, let n(P) be the minimum
number of sets into which V can be partitioned so that each set induces a
subgraph H with property P. The number n(P) specifies various properties
P.
The ‘Chromatic Polynomial’ is a graph polynomial studied in algebraic graph
theory, a branch of mathematics. It counts the number of graph colourings
as a function of the number of colours and was originally defined by George
David Birkhoff to study the four colour problem.
The fact that the number of k-colourings is a polynomial in k follows from a
recurrence relation called the ‘Deletion–Contraction Recurrence’ or
‘Fundamental Reduction Theorem’. It is based on edge contraction, for a
pair of vertices u and v the graph G/uv is obtained by merging the two
vertices and removing any edges between them.
For fixed G on n vertices, the chromatic polynomial P(G, x) is a monic
polynomial of degree exactly n, with integer coefficients.
The chromatic polynomial includes at least as much information about the
colourability of G as does the chromatic number. Definitely, the chromatic
number is the smallest positive integer that is not a zero of the chromatic
polynomial,

(G) = min {k : P(G, k) > 0}
Two graphs are said to be chromatically equivalent if they have the same
chromatic polynomial. Isomorphic graphs have the same chromatic
polynomial, but non-isomorphic graphs can be chromatically equivalent.
A root or zero of a chromatic polynomial, called a ‘Chromatic Root’, is a
value x where P (G, x) = 0. Chromatic roots have been very well studied,
in fact, Birkhoff’s original motivation for defining the chromatic polynomial

Chromatic Numbers

NOTES

Self-Instructional
192 Material

was to show that for planar graphs, P (G, x) > 0 for x 4. This would have
established the four colour theorem.

11.7 KEY WORDS

Chromatic numbers: A graph G of n vertices can be properly coloured in
many different ways using a sufficiently large number of colours. This property
of a graph is expressed by a polynomial.
Chromatic partitioning: Let G = (V,E) be a graph. For a property P, let
n(P) be the minimum number of sets into which V can be partitioned so that
each set induces a subgraph H with property P.
Chromatic polynomial: The chromatic polynomial is a graph polynomial
studied in algebraic graph theory, a branch of mathematics. It counts the
number of graph colourings as a function of the number of colours and was
originally defined by George David Birkhoff to study the four colour problem.
Chromatic equivalence: Two graphs are said to be chromatically
equivalent if they have the same chromatic polynomial.
Chromatic roots: A root or zero of a chromatic polynomial, called a
chromatic root, is a value x where P(G,x) = 0.
Categorification: The chromatic polynomial is categorified by a homology
theory closely related to Khovanov homology.

11.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the chromatic numbers.
2. Explain the chromatic partitioning.
3. State the chromatic polynomial.
4. Elaborate on the deletion-contraction formula.
5. Interpret the properties of the chromatic polynomial.
6. Define the chromatic equivalence.
7. Illustrate the chromatic roots.

Long-Answer Questions

1. Discuss briefly the chromatic numbers with the help of example.
2. Analyse the chromatic partitioning. Give appropriate example.
3. Explain the chromatic polynomial.

NOTES

Self-Instructional
Material 193

Chromatic Numbers4. Interpret the deletion-contraction formula.
5. Briefly define the properties of the chromatic polynomial.
6. Elaborate on the chromatic equivalence.
7. Define chromatic roots with suitable example.

11.9 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

Trees

NOTES

Self-Instructional
194 Material

BLOCK - IV
TREES AND CUT SETS

UNIT 12 TREES

Structure
12.0 Introduction
12.1 Objectives
12.2 Trees

12.2.1 Properties of Trees
12.3 Pendent Vertices in a Trees
12.4 Distance and Centers in a Trees
12.5 Rooted and Binary Trees
12.6 Answers to Check Your Progress Questions
12.7 Summary
12.8 Key Words
12.9 Self Assessment Questions and Exercises

12.10 Further Readings

12.0 INTRODUCTION

In graph theory, a tree is an undirected graph in which any two vertices are connected
by exactly one path, or equivalently a connected acyclic undirected graph. A forest
is an undirected graph in which any two vertices are connected by at most one
path, or equivalently an acyclic undirected graph, or equivalently a disjoint union
of trees. A polytree (or directed tree or oriented tree or singly connected network)
is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A
polyforest (or directed forest or oriented forest) is a directed acyclic graph whose
underlying undirected graph is a forest.

The various kinds of data structures referred to as trees in computer science
have underlying graphs that are trees in graph theory, although such data structures
are generally rooted trees. A rooted tree may be directed, called a directed rooted
tree, either making all its edges point away from the root—in which case it is
called an arborescence or out-tree—or making all its edges point towards the
root—in which case it is called an anti-arborescence or in-tree. A rooted tree itself
has been defined by some authors as a directed graph. A rooted forest is a disjoint
union of rooted trees. A rooted forest may be directed, called a directed rooted
forest, either making all its edges point away from the root in each rooted tree—
in which case it is called a branching or out-forest—or making all its edges point
towards the root in each rooted tree—in which case it is called an anti-branching
or in-forest.

NOTES

Self-Instructional
Material 195

TreesA rooted tree is a tree in which one vertex has been designated the root.
The edges of a rooted tree can be assigned a natural orientation, either away from
or towards the root, in which case the structure becomes a directed rooted tree.

The term “Tree” was coined in 1857 by the British mathematician Arthur
Cayley.

In this unit, you will study about the trees, properties of trees, pendent
vertices in a tree, distance and centres in a tree, rooted and binary trees.

12.1 OBJECTIVES

After going through this unit, you will be able to:
Define the trees
Explain the properties of trees
Interpret the pendent vertices in a tree
Elaborate on the distance and centres in a tree
Comprehend the rooted and binary trees

12.2 TREES

In mathematics, and more specifically in graph theory, a tree is an undirected graph
in which any two vertices are connected by exactly one path. Alternatively, any
connected graph without simple cycles is a tree. A forest is considered as a disjoint
union of trees.

12.2.1 Properties of Trees
In this section we shall study the characteristics of a tree.

Acyclic Graph: A graph G which has no cycles is called an acyclic graph.

Tree: A connected acyclic graph G is called a tree.

For example,

Fig. 12.1 Trees

Notes:

1. Trees are often known as open graphs.
2. Any organizational hierarchy is also an example of tree.

Trees

NOTES

Self-Instructional
196 Material

Theorem 12.1: Every two vertices in a tree, are joined by a unique path.
Proof: By contradiction: Let G be a tree and assume that there are two distinct
(v, w) paths P1 and P2 in G. Since P1 P2, there is an edge e = V1V2 of P1 that
is not in P2. Clearly (P1 P2) –e is connected. Therefore it contains a (V1–V2)
path P. Now P + e is a cycle in the acyclic graph G, which is a contradiction to the
fact that G is a tree.

Theorem 12.2: If G is a tree on n vertices, then G has (n –1) edges.

Proof: By induction on the number of vertices.
When n = 1,)(10)(1KGnGE

When n = 2,)(11)(2KGnGE

Let us assume that this theorem is true for all trees of G with fewer than n
vertices.

Now, let G be a tree on n vertices. Let ue be an edge in G. Then G – e is
disconnected and G has two components say G1 and G2 of G – e. Since G is
acyclic, G1 and G2 are also acyclic and hence G1 and G2 are also trees. Moreover
G1 and G2 has fewer than n vertices say n1 and n2, respectively. Therefore, by
induction hypothesis,

G1 has (n1– 1) edges and G2 has (n2 – 1) edges.
1)()()(21 GGEGE (Here 1 in the sum corresponds to the edge e)

1 2

1 2

(1) (1) 1
1

1

n n
n n
n

Therefore, an n vertex tree has (n – 1) edges.

Theorem 12.3: Every tree has atleast two vertices of degree one in a tree, i.e.,
there are atleast two pendant vertices.

Proof: Let G be a tree on n vertices. Then,
)(,1)(Gvvd (12.1)

Already we have, “ eGEvdvv .2)(.2)(” (12.2)

Since G is an n-vertex tree, it has (n –1) edges.
)22()()(nvdGvv (12.3)

From Equations (12.1) and (12.3), it follows that d(v) = 1 for atleast two
vertices.

Note: In a tree, every edge is a cut-edge.

NOTES

Self-Instructional
Material 197

Trees
12.3 PENDENT VERTICES IN A TREES

In this section, we shall discuss problems using trees.

Binary Search Trees
Binary search tree is a binary tree in which each child is either a left or right child;
no vertex has more than one left child and one right child, and the data are associated
with vertices.

Example 12.1: Build a binary search tree for the words banana, peach, apple,
pear, coconut, mango and papaya using the alphabetical order.

Solution: The binary tree is build as follows:

Fig. 12.2 Binary Search Tree

Further mango is the right child of coconut and papaya is the right child of
mango.
Decision Trees
A rooted tree in which each internal vertex is assigned to a decision with a subtree
at the vertices, then each possible outcome of the decision is called a decision
tree.

Traversal of a Tree
A systematic method for visiting every vertex of an ordered rooted tree is called
as a ‘Traversal Algorithm’.

Pre-Order: Let T be an ordered rooted tree with root r. Suppose T has one and
only vertex say r, then r is the pre-order traversal of T. Suppose that T1, T2, ..., Tk
are the subtrees at r from left to right in T, then pre-order traversal begins by
visiting r. It continues by traversing T1 in pre-order, then T2 in pre-order and so
on, until Tk is reached.

Trees

NOTES

Self-Instructional
198 Material

Fig. 12.3 Pre-Order Traversal

Step 1: Visit the root r.
Step 2: Visit T1 in pre-order.
Step 3: Visit T2 in pre-order.
Step k+1: Visit Tk in pre-order.

Let us try to understand the above with the help of an example.

Let T be an ordered root tree. The steps of the pre-order traversal of T are
as follows:

We traverse T in pre-order by listing the root r, followed by the pre-order
list of subtree with root a, the pre-order list of subtree with root b, and the pre-
order list of subtree with root c.

NOTES

Self-Instructional
Material 199

Trees

Algorithm: Pre-Order Traversal

Step 1: Visit root r and then list r.

Step 2: For each child of r from left to right, list the root of first subtree then
next subtree and so on until we complete listing the roots of subtrees
at level 1.

Step 3: Repeat Step 2, until we arrive at the leaves of the given tree.

Step 4: Stop.
In-Order Traversal: Let T be an ordered rooted tree with its root at vertex r.
Suppose T consists only root r, then r is the in-order traversal of T. If not, i.e.,
suppose T has subtrees T1,T2,...,Tk at r from left to right. The in-order traversal
begins by traversing T1 in-order, then visiting r. It continues by traversing T2 in-
order, then Ts inorder and so on and finally Tk in-order.

Fig. 12.4 In-Order Traversal

Step 1: Visit T1 in-order.

Step 2: Visit root.

Step 3: Visit T2 in-order.

Step k+1: Visit Tk in-order.
Example 12.2: Determine the order in which the vertices of the following rooted
tree is visited using an in-order traversal.

Trees

NOTES

Self-Instructional
200 Material

Solution: The in-order traversal begins with an in-order traversal of the subtree
with root at a, followed by the root r, and the in-order listing of the subtree with
root b.

Definition of Post-Order Traversal

Let T be an ordered rooted tree with root r. If T has only one vertex r, then r is the
post-order traversal of T. But if T has subtrees T1,T2,...,Tk at r from left to right,
the post-order traversal begins by traversing T1 in post-order, then T2 in post-
order, and so on, until Tk and ends by visiting r.

For example,

NOTES

Self-Instructional
Material 201

TreesFor example,

The post-order traversal begins with the post-order traversal of the subtree
with root a, the post-order traversal of the subtree with root b, and the post-
order traversal of the subtree with root c, followed by the root r.

Infix, Prefix, and Postfix Notation
We can represent any expression (like arithmetic, compound proposition) using
ordered rooted trees. An ordered rooted tree can be used to represent expressions,
where the internal vertices represent operations, the leaves represent the variables
or numerals.

Example 12.3: What is the ordered rooted tree that represents the expression
((a + b) 3) + ((a – 6)/3)?

Solution: First construct a subtree for a + b. Then this tree is included as a part of
the next subtree of ((a + b) 3). Similarly a subtree is constructed for (a – 6) then
this tree is included as a part of the next subtree of (a – 6)/3. Finally the subtrees
((a + b) 3) and (a – 6)/3 are combined to form the required tree corresponding
to the given expression.

Ordered rooted tree corresponding to the expression ((a + b) 3) +
((a – 6)/3).

Trees

NOTES

Self-Instructional
202 Material

An in-order traversal of the binary tree representing an expression, produces
the original expression with the elements and operations in the same order as they
originally appeared (except unary operator).

If we use parenthesis, whenever we encounter an operation there will be no
ambiguity. Such fully parenthesised expression is said to be infix form.

To get the prefix form of an expression, we traverse its rooted tree in pre-
order.

Expressions written in prefix form are called Polish notation.
Example 12.4: What is the prefix form of ((a + b) 3) + ((a – 6)/3)?

Solution: The ordered rooted tree corresponding to the expression

((a + b) 3) + ((a – 6)/3) is,

To obtain the prefix form of the given expression, we have to traverse the
binary tree in pre-order. Prefix form of the expression,

((a + b) 3) + ((a – 6)/3) is + ab 3/ – a 63

We obtain the postfix form of an expression by traversing its binary tree in
post-order.
Example 12.5: What is the postfix form of ((a + b) 3) + ((a – 6)/3)?
Solution: The binary tree corresponding to the expression is given as,

To obtain the postfix form of the given expression, we have to traverse its
binary tree in post-order. The required post fix form is ab + 3 a6 – 3/+.
Example 12.6: Draw the decision tree that orders the elements of the list a,b,c.

Solution: The following is decision tree that contains the list a,b,c.

NOTES

Self-Instructional
Material 203

Trees

12.4 DISTANCE AND CENTERS IN A TREES

In a rooted tree, every vertex has a path length which is given by the number of
edges it has to traverse from the root to that vertex. Every vertex has a unique
path length. A tree has been shown here. To find the path length of any vertex, one
has to start from the root and travel up to that vertex. For example, path length of
vertex D, E, F and G is 2 whereas for H, I and J it is 3 and for K and L it is 4.

Fig. 12.5 Path Length

12.5 ROOTED AND BINARY TREES

Rooted Tree: In a directed tree (every edge assigned with a direction), a particular
vertex is called a root if that vertex is of degree zero. A tree together with its root
produces a graph called a rooted tree.

(Note that in the rooted tree, every edge is directed away from the root)
For example,

Trees

NOTES

Self-Instructional
204 Material

Suppose T is a rooted tree. If a vertex u is a vertex in T other than the root, the
parent of u is the unique vertex u1 such that there is a directed edge from u1 to u.
Here u is called as a child of u1. Vertices of the same parent are called as siblings.
A vertex of a rooted tree is called as a leaf if it has no children and those vertices
which have children, are called as internal vertices.

Fig. 12.6 Rooted Trees

If v is a vertex in a tree, the subtree with v as its root is the subgraph of the
tree consisting of v and its children and all edges incident to these children.
For example,

Fig. 12.7 Rooted Tree T Fig. 12.8 Subtree of T with
its Root u

k-Ary Tree: A rooted tree is called a k-ary tree if every internal vertex has,
not more than k-children. The tree is called a full k-ary tree if every internal
vertex has, exactly k-children. A k-ary tree with k = 2 is called a binary tree.
For example,

Fig. 12.9 K-ary Trees

NOTES

Self-Instructional
Material 205

TreesT2, not a 2-ary tree. (vertex u has only one child, whereas all the other vertices
have two children).

A tree T is called as a binary tree if there is only one vertex with degree 2
and the remaining vertices are of degree 1 or 2.
Example 12.7: Prove that a full k-ary tree with i-internal vertices contains ki+1
vertices.
Solution: In a full k-ary tree, every internal vertex has k-children and hence a full
k-ary tree with i-internal vertices can have ki vertices. If we include the root, the
tree has ki + 1 vertices. By looking at the full k-ary tree, we can observe the
following:

(i) n vertices has i = (n –1)/k internal vertices and p = [(k –1)n + 1]/k leaves.
(ii) i internal vertices has n = ki + 1 vertices and p = (m –1)i + 1 leaves.
(iii)p leaves has n = (kp –1)/(k –1) vertices and i = (p –1)/(k – 1) internal

vertices.

Level and Height in a Rooted Tree: The level of a vertex v in a rooted tree is
the length of the path from the root to this vertex (Refer Figure 12.10). The height
of a rooted tree is the length of the longest path from the root to any vertex.
For example,

Fig. 12.10 Levels of Trees

A rooted tree T with its levels. Height of T is 4.
Balanced Tree: A rooted k-ary tree of height h is balanced if all the leaves are at
level h or (h – 1).

Check Your Progress

1. What do you understand by a tree in graph theory?
2. Explain the properties of trees.
3. Define the binary search trees.
4. Elaborate on the decision trees.
5. State the traversal algorithm.
6. Explain the pre-order.

Trees

NOTES

Self-Instructional
206 Material

7. Illustrate the in-order traversal.
8. Interpret the distance and centres in a tree.
9. Analyse the rooted tree.

10. Define the k-ary tree.

12.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. In mathematics, and more specifically in graph theory, a tree is an undirected
graph in which any two vertices are connected by exactly one path.
Alternatively, any connected graph without simple cycles is a tree. A forest is
considered as a disjoint union of trees.

2. Acyclic Graph: A graph G which has no cycles is called an acyclic graph.
Tree: A connected acyclic graph G is called a tree.

3. Binary search tree is a binary tree in which each child is either a left or
right child; no vertex has more than one left child and one right child, and
the data are associated with vertices.

4. A rooted tree in which each internal vertex is assigned to a decision with
a subtree at the vertices, then each possible outcome of the decision is
called a decision tree.

5. A systematic method for visiting every vertex of an ordered rooted tree is
called as a ‘Traversal Algorithm’.

6. Let T be an ordered rooted tree with root r. Suppose T has one and only
vertex say r, then r is the pre-order traversal of T. Suppose that T1, T2, ...,
Tk are the subtrees at r from left to right in T, then pre-order traversal
begins by visiting r. It continues by traversing T1 in pre-order, then T2 in
pre-order and so on, until Tk is reached.

7. Let T be an ordered rooted tree with its root at vertex r. Suppose T consists
only root r, then r is the in-order traversal of T. If not, i.e., suppose T has
subtrees T1,T2,...,Tk at r from left to right. The in-order traversal begins by
traversing T1 in-order, then visiting r. It continues by traversing T2 in-order,
then Ts inorder and so on and finally Tk in-order.

8. In a rooted tree, every vertex has a path length which is given by the number
of edges it has to traverse from the root to that vertex. Every vertex has a
unique path length. A tree has been shown here. To find the path length of
any vertex, one has to start from the root and travel up to that vertex.

9. In a directed tree (every edge assigned with a direction), a particular vertex
is called a root if that vertex is of degree zero. A tree together with its root
produces a graph called a rooted tree.

NOTES

Self-Instructional
Material 207

Trees10. A rooted tree is called a k-ary tree if every internal vertex has, not more
than k-children. The tree is called a full k-ary tree if every internal vertex
has, exactly k-children. A k-ary tree with k = 2 is called a binary tree.

12.7 SUMMARY

In mathematics, and more specifically in graph theory, a tree is an undirected
graph in which any two vertices are connected by exactly one path.
Alternatively, any connected graph without simple cycles is a tree. A forest is
considered as a disjoint union of trees.
Acyclic Graph: A graph G which has no cycles is called an acyclic graph.
Tree: A connected acyclic graph G is called a tree.

Binary search tree is a binary tree in which each child is either a left or
right child; no vertex has more than one left child and one right child, and
the data are associated with vertices.

A rooted tree in which each internal vertex is assigned to a decision with
a subtree at the vertices, then each possible outcome of the decision is
called a decision tree.

A systematic method for visiting every vertex of an ordered rooted tree is
called as a ‘Traversal Algorithm’.

Let T be an ordered rooted tree with root r. Suppose T has one and only
vertex say r, then r is the pre-order traversal of T. Suppose that T1, T2, ...,
Tk are the subtrees at r from left to right in T, then pre-order traversal
begins by visiting r. It continues by traversing T1 in pre-order, then T2 in
pre-order and so on, until Tk is reached.
Let T be an ordered rooted tree with its root at vertex r. Suppose T consists
only root r, then r is the in-order traversal of T. If not, i.e., suppose T has
subtrees T1,T2,...,Tk at r from left to right. The in-order traversal begins by
traversing T1 in-order, then visiting r. It continues by traversing T2 in-order,
then Ts inorder and so on and finally Tk in-order.
In a rooted tree, every vertex has a path length which is given by the number
of edges it has to traverse from the root to that vertex. Every vertex has a
unique path length. A tree has been shown here. To find the path length of
any vertex, one has to start from the root and travel up to that vertex.
In a directed tree (every edge assigned with a direction), a particular vertex
is called a root if that vertex is of degree zero. A tree together with its root
produces a graph called a rooted tree.
A rooted tree is called a k-ary tree if every internal vertex has, not more
than k-children. The tree is called a full k-ary tree if every internal vertex
has, exactly k-children. A k-ary tree with k = 2 is called a binary tree.

Trees

NOTES

Self-Instructional
208 Material

12.8 KEY WORDS

Trees: A tree is an undirected graph in which any two vertices are connected
by exactly one path.
Acyclic graph: A graph G which has no cycles is called an cyclic graph.
Binary search tree: Binary search tree is a binary tree in which each child
is either a left or right child; no vertex has more than one left child and one
right child, and the data are associated with vertices.
Decision trees: A rooted tree in which each internal vertex is assigned to
a decision with a subtree at the vertices, then each possible outcome of the
decision is called a decision tree.
Traversal algorithm: A systematic method for visiting every vertex of an
ordered rooted tree is called as a traversal algorithm.
Rooted tree: In a directed tree (every edge assigned with a direction), a
particular vertex is called a root if that vertex is of degree zero.
K-ary tree: A rooted tree is called a k-ary tree if every internal vertex has,
not more than k-children.
Balanced tree: A rooted k-ary tree of height h is balanced if all the leaves
are at level h or (h 1).

12.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the tree.
2. Elaborate on the properties of trees.
3. Analyse the binary search trees.
4. Illustrate the decision trees.
5. Define the traversal algorithm.
6. State the pre-order.
7. Explain the in-order traversal.
8. Interpret the distance and centres in a tree.
9. Describe the rooted tree.

10. Analyse the k-ary tree.

Long-Answer Questions

1. Discuss briefly the trees with the help of example.

NOTES

Self-Instructional
Material 209

Trees2. Explain the properties of trees.
3. Elaborate on the binary search trees. Give appropriate example.
4. Define the post-order traversal.
5. Analyse the distance and centres in a tree.
6. Describe briefly rooted tree.
7. Interpret the k-ary tree. Give example.

11.10 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory. Chennai:
Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

Spanning Trees

NOTES

Self-Instructional
210 Material

UNIT 13 SPANNING TREES
Structure

13.0 Introduction
13.1 Objectives
13.2 Spanning Trees
13.3 Fundamental Circuits
13.4 Finding all Spanning Trees of a graph
13.5 Spanning Trees in a Weighted Graph
13.6 Answers to Check Your Progress Questions
13.7 Summary
13.8 Key Words
13.9 Self Assessment Questions and Exercises

13.10 Further Readings

13.0 INTRODUCTION

In graph theory, a spanning tree T of an undirected graph G is a subgraph, i.e., a
tree which includes all of the vertices of G. In general, a graph may have several
spanning trees, but a graph that is not connected will not contain a spanning tree
(see spanning forests below). If all of the edges of G are also edges of a spanning
tree T of G, then G is a tree and is identical to T (that is, a tree has a unique
spanning tree and it is itself).

A special kind of spanning tree, the Xuong tree, is used in topological graph
theory to find graph embedding with maximum genus. A Xuong tree is a spanning
tree such that, in the remaining graph, the number of connected components with
an odd number of edges is as small as possible. A Xuong tree and an associated
maximum-genus embedding can be found in polynomial time.

A tree is a connected undirected graph with no cycles. It is a spanning tree
of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph
of G (every edge in the tree belongs to G). A spanning tree of a connected graph
G can also be defined as a maximal set of edges of G that contains no cycle, or as
a minimal set of edges that connect all vertices. Adding just one edge to a spanning
tree will create a cycle; such a cycle is called a fundamental cycle. There is a
distinct fundamental cycle for each edge not in the spanning tree; thus, there is a
one-to-one correspondence between fundamental cycles and edges not in the
spanning tree. For a connected graph with V vertices, any spanning tree will have
V – 1 edges, and thus, a graph of E edges and one of its spanning trees will have
E – V + 1 fundamental cycles (The number of edges subtracted by number of
edges included in a spanning tree; giving the number of edges not included in the
spanning tree). For any given spanning tree the set of all E – V + 1 fundamental
cycles forms a cycle basis, a basis for the cycle space.

In this unit, you will study about the spanning trees, fundamental circuits,
finding all spanning trees of a graph, and spanning trees in a weighted graph.

NOTES

Self-Instructional
Material 211

Spanning Trees
13.1 OBJECTIVES

After going through this unit, you will be able to:
Analyse the spanning trees
Define the fundamental circuits
Finding out all spanning trees of a graph
Elaborate on the spanning trees in a weighted graph

13.2 SPANNING TREES

A connected graph might contain more than one spanning tree. Consider the
following graphs shown in Figure 13.1 illustrating the concept of spanning tree.

Fig. 13.1 Spanning Trees

In T1, the edges e1, e2, e5, e6 are present, whereas in T2, edges e2, e4, e5, e6
are present.

Edges of G, which are present in a spanning tree T, are called as the branches
of G with respect to T. The edges of G, which are not present in its spanning tree
T, are called the chords of G with respect to T.

In the above example, the branches of G are e1, e2, e5, e6, with respect to
T1 and the branches of G are e2, e4, e5, e6, with respect to T2.
Note: Let G be a connected graph on n vertices; e-edges and T be one of its spanning tree.
Since T is a tree on n vertices, it has (n –1) edges, i.e., the number of branches of G with
respect to T is (n –1); the number of chords of G with respect to T is e– (n –1). Often the
number of branches of G is called as rank of G and is denoted by r(G); the number of chords
of G is called as the nullity of G, denoted by (G). In general, for a connected graph on n-
vertices and e-edges, r(G), the rank of G is (n –1); (G), the nullity of G is e – n + 1.

Spanning Trees

NOTES

Self-Instructional
212 Material

13.3 FUNDAMENTAL CIRCUITS

Let T be the spanning tree of a connected graph G, and e be a chord of G with
respect to T. Since the spanning tree T is minimally acyclic, the graph T+e contains
a unique cycle. This cycle is called a fundamental cycle in G with respect to T.

Every chord of G gives rise to a fundamental cycle. Therefore, the number
of fundamental cycles possible for a connected graph is atmost (G). (Refer Figure
13.2).
For example,

Fig. 13.2 Fundamental Circuit in a Graph

13.4 FINDING ALL SPANNING TREES OF A
GRAPH

We can build the spanning tree of a connected graph using DFs and BFs. First we
shall see how DFs are useful in construction of a spanning tree from a given
connected graph.

Depth-First Search
Let G be the given connected graph. Arbitrarily choose a vertex as the root. Find
a path starting from this choosen vertex by successively adding edges, where each
edge is incident with the last vertex in the path and a vertex not already in the path.

NOTES

Self-Instructional
Material 213

Spanning TreesContinue adding edges to this path as long as possible. If this path consists of all
the vertices of G, this path is the required spanning tree. If not, more edges should
be added. Move back to the next to last vertex in this path, and if possible, form
a new path starting at this vertex passing through vertices that were not already
visited. If this is not possible, move back to another vertex in this path (i.e., 2
vertices back from the last) and try again. Repeat this procedure, beginning at the
last vertex visited, moving back up the path one vertex at a time, forming new long
paths until no more edges can be added. This process ends with a spanning tree.

When this procedure returns to vertices previously visited, it is also called
as backtracking.
Example 13.1: Construct a spanning tree for the following graph G.

Solution: First we choose arbitrarily a vertex say e as the root. Form a path at e,
i.e., c d f is the path. Backtrack to d. Form a path beginning at d in such a way that
it has to visit the vertices which where not visited in the previous path, d e b a.
Since all the vertices of G are visited, this procedure gives the spanning tree T.

Breadth-First Search
First choose a vertex arbitrarily as the root. Add the edges of G which are incident
with this vertex. The new vertices added at this stage becomes level 1 in the
spanning tree. Order these vertices arbitrarily. Next, for each vertex at level 1
visited in order, add each edge incident to this vertex to the tree as long as it does
not create a simple circuit. Order the children of each vertex at level 1 arbitrarily.
This produces the vertices at level 2 in the tree. Continue in this manner until all the
vertices of G have been added. Ultimately we end with a spanning tree.

Spanning Trees

NOTES

Self-Instructional
214 Material

Example 13.2: Construct a spanning tree of the following graph G.

Solution: First choose a vertex say d (arbitrarily) as the root. Add the edges incident
to this vertex d. Hence the edges e2,e5,e7,e8 are incident with the vertex d. These
vertices create level 1.

i.e.,

Now add the edges which are incident to the vertices b,c,e,f in such a way
that the resulting graph does not contain any circuit.

Thus at this level itself we have got the spanning tree T.
Note: If the given graph is directed graph then we construct the underlying undirected
graph and apply DFs or BFs to obtain a spanning graph.

13.5 SPANNING TREES IN A WEIGHTED GRAPH

Let T be a spanning tree of G and e be a chord of G with respect to T. The graph
T+e is a fundamental circuit. In this circuit other than edge e, all the other edges
are branches of G with respect to T. On removal of any of the branches from the
fundamental circuit, we get a spanning tree T1, i.e., b is a branch in the fundamental
circuit with respect to a chord e, then spanning tree T1 is obtained by removing b
from T + e, i.e, T1 = T + e – b. This process is called cyclic interchange.

NOTES

Self-Instructional
Material 215

Spanning TreesFor example,

Fig. 13.3 Cycle Interchange

G – Connected Graph, T – Spanning Tree

T + e – Fundamental Circuit, T1 – Spanning Tree Obtained by Cyclic Interchange

Check Your Progress
1. Define the spanning tress.
2. Analyse the fundamental circuits.
3. Explain the depth-first search.
4. Elaborate on the breath-first search.
5. Interpret the spanning trees in a weighted graph.

13.9 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A connected graph might contain more than one spanning tree. Consider the
following graphs shown in Figure illustrating the concept of spanning tree.

2. Let T be the spanning tree of a connected graph G, and e be a chord of G
with respect to T. Since the spanning tree T is minimally acyclic, the graph
T+e contains a unique cycle. This cycle is called a fundamental cycle in G
with respect to T.

3. Let G be the given connected graph. Arbitrarily choose a vertex as the root.
Find a path starting from this choosen vertex by successively adding edges,
where each edge is incident with the last vertex in the path and a vertex not
already in the path. Continue adding edges to this path as long as possible. If
this path consists of all the vertices of G, this path is the required spanning tree.

4. First choose a vertex arbitrarily as the root. Add the edges of G which are
incident with this vertex. The new vertices added at this stage becomes
level 1 in the spanning tree. Order these vertices arbitrarily. Next, for each
vertex at level 1 visited in order, add each edge incident to this vertex to the
tree as long as it does not create a simple circuit.

Spanning Trees

NOTES

Self-Instructional
216 Material

5. Let T be a spanning tree of G and e be a chord of G with respect to T. The
graph T+e is a fundamental circuit. In this circuit other than edge e, all the
other edges are branches of G with respect to T. On removal of any of the
branches from the fundamental circuit, we get a spanning tree T1, i.e., b is a
branch in the fundamental circuit with respect to a chord e, then spanning
tree T1 is obtained by removing b from T + e, i.e, T1 = T + e – b. This
process is called cyclic interchange.

13.7 SUMMARY

A connected graph might contain more than one spanning tree.
Let T be the spanning tree of a connected graph G, and e be a chord of G
with respect to T. Since the spanning tree T is minimally acyclic, the graph
T+e contains a unique cycle. This cycle is called a fundamental cycle in G
with respect to T.
Let G be the given connected graph. Arbitrarily choose a vertex as the root.
Find a path starting from this choosen vertex by successively adding edges,
where each edge is incident with the last vertex in the path and a vertex not
already in the path. Continue adding edges to this path as long as possible. If
this path consists of all the vertices of G, this path is the required spanning tree.
First choose a vertex arbitrarily as the root. Add the edges of G which are
incident with this vertex. The new vertices added at this stage becomes
level 1 in the spanning tree. Order these vertices arbitrarily. Next, for each
vertex at level 1 visited in order, add each edge incident to this vertex to the
tree as long as it does not create a simple circuit.
Let T be a spanning tree of G and e be a chord of G with respect to T. The
graph T+e is a fundamental circuit. In this circuit other than edge e, all the
other edges are branches of G with respect to T. On removal of any of the
branches from the fundamental circuit, we get a spanning tree T1, i.e., b is a
branch in the fundamental circuit with respect to a chord e, then spanning
tree T1 is obtained by removing b from T + e, i.e, T1 = T + e – b. This
process is called cyclic interchange.

13.8 KEY WORDS

Spanning trees: A connected graph might contain more than one spanning
tree. Edges of G, which are present in a spanning tree T, are called as the
branches of G with respect to T.
Fundamental circuits: Let T be the spanning tree of a connected graph G,
and e be the chord of G with respect to T. Since the spanning tree T is
minimally acyclic, the graph T+e contains a unique cycle. This cycle is called
a fundamental cycle in G with respect to T.

NOTES

Self-Instructional
Material 217

Spanning TreesDepth-first search: Let G be the given connected graph. Arbitrarily choose
a vertex as the root. Find a path starting from this choose vertex by
successively adding edges, where each edge is incident with the last vertex
in the path and a vertex not already in the path.
Breadth-first search: First choose a vertex arbitrarily as the root. Add
the edges of G which are incident with this vertex. The new vertices added
at this stage becomes level 1 in the spanning tree.

13.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the spanning trees.
2. Elaborate on the fundamental circuits.
3. Analyse the depth-first search.
4. State the breath-first search.
5. Define the spanning trees in a weighted graph.

Long-Answer Questions

1. Discuss briefly the spanning trees with the help of example.
2. Describe the fundamental circuits. Give appropriate example.
3. Analyse the depth-first search in brief.
4. Elaborate on the breadth-first search.
5. Explain briefly the spanning trees in a weighted graph.

13.10 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Spanning Trees

NOTES

Self-Instructional
218 Material

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

NOTES

Self-Instructional
Material 219

Cut Sets and
Connectivity of GraphsUNIT 14 CUT SETS AND

CONNECTIVITY
OF GRAPHS

Structure
14.0 Introduction
14.1 Objectives
14.2 Cut Set
14.3 Properties of a Cut Sets
14.4 All Cut Set in a Graph
14.5 Fundamental Circuits and Cut Set

14.5.1 Fundamental Cut Sets
14.6 Connectivity and Separability
14.7 Euler Graph

14.7.1 Eulerian Digraphs
14.8 Hamiltonian Circuits and Paths
14.9 Answers to Check Your Progress Questions

14.10 Summary
14.11 Key Words
14.12 Self Assessment Questions and Exercises
14.13 Further Readings

14.0 INTRODUCTION

In graph theory, a cut is a partition of the vertices of a graph into two disjoint
subsets. Any cut determines a cut-set, the set of edges that have one endpoint in
each subset of the partition. These edges are said to cross the cut. In a connected
graph, each cut-set determines a unique cut, and in some cases cuts are identified
with their cut-sets rather than with their vertex partitions.

In a flow network, an s–t cut is a cut that requires the source and the sink to
be in different subsets, and its cut-set only consists of edges going from the source’s
side to the sink’s side. The capacity of an s–t cut is defined as the sum of the
capacity of each edge in the cut-set.

A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S
and T. The cut-set of a cut C = (S, T) is the set {(u,) E, T} of edges that
have one endpoint in S and the other endpoint in T. If s and t are specified vertices
of the graph G, then an s–t cut is a cut in which s belongs to the set S and t belongs
to the set T.

In an unweighted undirected graph, the size or weight of a cut is the number
of edges crossing the cut. In a weighted graph, the value or weight is defined by

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
220 Material

the sum of the weights of the edges crossing the cut. A bond is a cut-set that does
not have any other cut-set as a proper subset.

In this unit, you will study about the cut sets, properties of a cut set, all cut
sets in a graph, fundamental circuits and cut sets, connectivity and separability,
Eulerian and Hamiltonian graphs.

14.1 OBJECTIVES

After going through this unit, you will be able to:
Comprehend the cut sets
Understand the properties of a cut sets
Explain all cut sets in a graph
Elaborate on the fundamental circuits and cut sets
Define the connectivity and separability
Analyse the Eulerian and Hamiltonian graphs

14.2 CUT SET

In graph theory, a cut is a partition of the vertices of a graph into two disjoint
subsets. Any cut determines a cut-set, the set of edges that have one endpoint in
each subset of the partition. These edges are said to cross the cut. In a connected
graph, each cut-set determines a unique cut, and in some cases cuts are identified
with their cut-sets rather than with their vertex partitions.

In a flow network, an s–t cut is a cut that requires the source and the sink to
be in different subsets, and its cut-set only consists of edges going from the source’s
side to the sink’s side. The capacity of an s–t cut is defined as the sum of the
capacity of each edge in the cut-set.

A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S
and T. The cut-set of a cut C = (S, T) is the set {(u,) E, T} of edges that
have one endpoint in S and the other endpoint in T. If s and t are specified vertices
of the graph G, then an s–t cut is a cut in which s belongs to the set S and t belongs
to the set T.

In an unweighted undirected graph, the size or weight of a cut is the number
of edges crossing the cut. In a weighted graph, the value or weight is defined by
the sum of the weights of the edges crossing the cut. A bond is a cut-set that does
not have any other cut-set as a proper subset.

NOTES

Self-Instructional
Material 221

Cut Sets and
Connectivity of Graphs14.3 PROPERTIES OF A CUT SETS

Cut-Vertex: A vertex v in a graph G is said to be a cut-vertex if (G – v)
> (G), where (G) is the component of G and component is a maximal
connected subgraph of G, i.e., a vertex v of a connected graph is a cut-
vertex, iff (G – v) is disconnected.
For example, in Figure 14.1 the Cut-vertices and Cut-edges of graph G is
shown.

Fig. 14.1 Cut-Vertices and Cut-Edges

G1 contains one cut-vertex v and G2 contains no cut-vertices.

Theorem 14.1: A vertex v in a connected graph G is a cut-vertex iff there
exists vertices u and w (both are different from v) such that every path
connecting u and w contain v.
Proof: Let G be a connected graph and v be a cut-vertex.
Corollary 1: There exists vertices u and w such that every path between u and w
contains v.
Since v is a cut-vertex, (G – v) is disconnected and (G – v) contains two
components say G1 and G2. Let u and w be the vertices of G1 an G2 respectively.
Clearly, there is no (u – w) path in (G – v). Hence, every path connecting u and w
must contain v.
Conversely, let us assume that there exist vertices u and w such that every
(u – w) path contains v.
Corollary 2: v is a cut-vertex.
Suppose v is not a cut-vertex. Then (G – v) is connected. Since u, w are vertices
in G – v, there is a path between u and w in G – v, which does not contain the
vertex v. This is a contradiction. Hence, v is a cut-vertex.
Cut-Edge: An edge e in a graph G is said to be a Cut-edge, if (G – e) is
disconnected.
For example, in Figure 14.2 the graph G1 contains one Cut-edge and graph G2
contains no Cut-edge.

Fig. 14.2 G1 contains One Cut-edge and G2 has No Cut-edge

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
222 Material

As in Cut-vertex, a similar result can be furnished.

Theorem 14.2: An edge e in a connected graph G is a cut-edge iff there
exists vertices u and w such that every path connecting u and w must contain
the edge ‘e’.
Proof: Let G be a connected graph and e be a cut-edge.
Corollary 1: There exist vertices u and w such that every (u – w) path must
contain the edge e, since e is a cut-edge in G, (G – e) is disconnected and
(G – e) contains atleast two components say G1 and G2.
Let u and w be the vertices respectively in G1 and G2. Thus, there is no path
between u and w in (G – e). Hence, every path connecting u and w must
contain the edge e.

Conversely, suppose that there exist vertices u and w such that every path
connecting u and w must contain the edge e.

14.4 ALL CUT SET IN A GRAPH

Let G be a connected graph. Let us recollect the definition of cut-edge (bridge) and
cut-vertex. If G contains an edge e such that G–e is disconnected, then e is a bridge
of G. Further if G contains a vertex v such that G–v is disconnected, then v is a cut-
vertex of G.

Edge Cut-Set: A subset S of the edge set of a connected graph G is called an edge
cut-set or cut-set of G if

(i) G – S is disconnected.
(ii) G – S1 is connected for every proper subset S1 of S.

Vertex Cut-Set: A subset u of the vertex set of G is called a vertex cut-set if
(i) G – u is disconnected
(ii) G – u1 is connected for every proper subset u1 of u.

For Example:

(a) S = {e1,e4,e6,e8} is a cut-set

NOTES

Self-Instructional
Material 223

Cut Sets and
Connectivity of Graphs

(b) u = {v1,v3,v5} is a vertex-cut-set

Note: For a connected graph, there may be more than one cut-set.

For example, consider the above graph G. Some cut-sets of G are
S1 = {e1,e4,e6,e8}
S2 = {e1,e2}, S3 = {e1,e3,e9}
From the above note, we are forced to introduce two more parameters for

graphs viz edge-connectivity (G) and vertex connectivity k (G).
Edge Connectivity: The edge connectivity (G) of a graph is the minimum cardinality
of a set S of edges of G such that G–S is disconnected, i.e., the edge (line) connectivity
of a connected graph is the number of edges in a minimum cut-set in the graph.

For Example:

Note:
1 If G is a tree then (G) = 1.
2 G has (G) = 0 iff G is disconnected or trivial.

Vertex Connectivity: The vertex connectivity K(G) of a graph G is the minimum
number of vertices whose deletion makes G a disconnected or trivial graph, i.e., the
number of vertices in a minimum vertex cut is called the connectivity of the graph.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
224 Material

For Example:

Result For every graph G, K(G) < (G) < (G)
Proof Let v be a vertex of G with minimum degree. i.e., d(v) = (G). Removing

(G) edges of G incident with v produces a graph G1, in which v is isolated.
Clearly G is disconnected or trivial.

(G) < (G) ...(14.1)
Claim K(G) < (G)

If (G) = 0 then G is disconnected.
K(G) = 0.

If (G) = 1 then G is a connected graph containing a cut-edge (bridge).
Therefore either G is isomorphic to K2 or G is a connected graph having atleast
one cut-vertex.

 In both cases, K(G) = 1.
Now let us assume that (G) > 2. Let S be a cut-set of G with (G) edges

and e = xy be an edge in S. If the edges of S–{e} are deleted from G, the resulting
subgraph H1 is connected and contains e as a cut-edge. Now select an incident
vertex different from x and y for each and every edge in S–{e}.Remove these
vertices from H1, the resulting subgraph H2 is disconnected, then

K(G) < (G) – 1 < (G).
Suppose the subgraph H2 is connected, then H2 is isomorphic to K2 or the

subgraph H2 has a cut-vertex [since H2 is an induced subgraph of H1]. In any
case, there exists a vertex of H2 whose removal results in a disconnected graph.
Therefore

K(G) < (G) ...(14.2)
From Equations (14.1) and (14.2), K(G) < (G) < (G)

NOTES

Self-Instructional
Material 225

Cut Sets and
Connectivity of Graphs

In the figure K(G) = 1; (G) = 3 and (G) = 3.
n-Edge Connected: A graph G is n-edge connected (n > 1) if (G) > n and G
is n-connected if K(G) > n.

Check Your Progress

1. What do you understand by the cut sets?
2. Explain the cut vertex.
3. Define cut edge.
4. What is edge cut-set?
5. Elaborate on the vertex cut-set.
6. Explain the edge connectivity.
7. Analyse the vertex connectivity.

14.5 FUNDAMENTAL CIRCUITS AND CUT SET

Let T be a spanning tree in a connected graph G. When a chord is added to a
spanning tree T then it forms exactly one circuit. Such a circuit is termed as a
fundamental circuit.
Theorem 14.3: If a connected graph G it ehre is no circuit, then G itselt is considered
as a tree through all its vertices. Therefore, G is its own spanning tree.

Fig. 14.3 Fundamental Circuit

Now, If G is has one or more circuits, then select any circuit and delete an
edge from the circuit. In the selected circuit there atleast one more path that connects
the end vertices of the deleted edge. Consequently the delection of the edge will
leave the graph connected.

If there remains more circuits after the deletion then again select any other
circuit from the graph and delete any one of its edge. Similarly the resultant graph
will also remain connected.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
226 Material

Keep repeating the delection process so that all the circuits are ‘broken’
and the resultant subgraph is connected and circuit-free which contains all the
vertices of G.

Subsequently, at the end of the total producure we will obtain a spanning
tree.

Hence, it proves that every connected graph has atleast one spanning tree.
Example 14.1: Describe a method of find all spanning tree of a graph.
Solution: Let G be a connected graph.

If G is a tree then G itself will be one and only one spanning tree of G.
Now, as shown in the Figure 14. consider a connected graph G. It is not a

tree because it has one circuit. Let T1 be a spanning tree of G that contains the
branches a, b, c, d.

Fig. 14.4 Finding a Spanning Tree

Add a chord, say h, to the tree which will form a fundamental circuit through
b, c, h, d. Removal of the branch c of T1 from the fundamental circuit b, c, h, d will
break the circuit and will create another spanning tree, say T2.

Instead of deleting C, if we delete d or b then we will obtain two more
different spanning trees, namely a, b, c, h and a, d, h, c. This process generates all
possible trees corresponding to the chord h and associated fundamental circuit.

Restarting with the initial tree T1 and repeating the process of deletion or
removal with the chord h, using another chord e or f or g you can obtain all
possible different spanning trees corresponding to each chord addition to T1.

Therefore, we can obtain all possible spanning trees of a connected graph.

14.5.1 Fundamental Cut Sets

For defining the concept of Cut Set, let us consider a spanning tree T of a connected
graph G. In graph G take any branch b in T. Subsequently (b) is cut set in T,
therefore (b) partitions all vertices of T into two disjoint sets–one at each end of b.

NOTES

Self-Instructional
Material 227

Cut Sets and
Connectivity of Graphs

Consdider the same partition of vertices in G,and the cut set S in G that
corresponds to this partition. Cut set s will contain only one branch b of T, and the
rest (if any) of the edges in S will be referred as chords with respect to T. This cut-
set S containing exactly one branch of a tree T is termed as Fundamental Cut
Set with respect to T. In addition a fundamental cut set is also termed as Basic
Cut Set.

In Figure 14.5, a spanning tree t (shown with dark lines) and all five of the
fundamental cut sets with respect to T are shown with broken lines cutting through
each cut set.

Fig. 14.5 Fundamental Cut Set of a Graph

Every chord of a spanning tree defines a Unique Fundamental Circuit
while every branch of a spanning tree defines a Unique Fundamental Cut Set.
Remember that the term fundamental cut set can be defined only with respect to a
given spanning tree.

The cut sets of a graph can be obtained from a given set of cut sets.
Theorem 14.4: The ring sum of any two cut sets in a graph is either a third cut set
or an edge-disjoint union of cut sets.

In the Figure 14.5 consider that ring sums of the following three pairs of cut
sets are given:

{d, e, f} {f, g, h} = {d, e, g, h}, Another cut set.
{a, b} {b, c, e, f} = {a, c, e, f}, Another cut set.
{d, e,g, h} {f, g, k} = {d, e, f, h, k},

= {d, e, f} {h, k}, An edge-disjoint
 Union of cut sets

14.6 CONNECTIVITY AND SEPARABILITY

In this section, we study the structure of graphs. A walk in a graph G is an alternating
sequence.
W : v0, e1, v1, e2,..., vn–1, en, vn (n 0) of vertices and edges, beginning and
ending with vertices, such that ei = vi – 1 vi, i = 1, 2,..., n. It is denoted by

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
228 Material

(v0 – vn) walk. The number of edges (not necessarily distinct) is called the
length of walk. In graph G, u, e1, v, e2, w, e6, x, e4, u is a walk of length
4 (Refer Figure 14.6).
The following figure illustrates the path and walk in a graph:

Fig. 14.6 Path and Walk in a Graph

A trail is a walk in which no edge is repeated and a path is a trail in which
no vertex is repeated. Thus, a path is a trail, but not every trail is a path. In the
above graph G, x, e6, w, e3, v, e1, u, e2, w, e7, y is a trail that is not a path, and u,
e4, x, e6, w, e3, v is a path.
Theorem 14.5: Every (u – v) walk in a graph contains a (u – v) path.
Proof: Let W be a (u – v) walk in a graph G. If u = v, then w is the trail
path, i.e., walk of length zero.

Suppose u v and W : u = u0, u1, u2,..., un = v. If no vertex of G appears
in W more than once, then w itself is a (u – v) path. Otherwise, there are
vertices of G that occur in w twice or more. Let i and j be distinct positive
integers such that i < j with ui = uj. Then, say, ui, ui + 1,...,uj – 2, uj – 1 are
removed from w, and the resulting sequence is (u – v) walk w1 whose length
is less than that of w. By induction hypothesis, this w1 contains a (u – v) path
and hence, w has a (u – v) path. If no vertex of G appears more than once
in w1, then w1 is a (u – v) path. If not, apply the procedure, until we get a
(u – v) path.

Cycle: A cycle is a walk. v0, v1,..., vn is a walk in which n 3, v0 = vn
and the ‘n’-vertices v1, v2,..., vn are distinct. We say that a (u – v) walk is
closed if u = v and open if u v.

Connection: Let u and v be vertices in a graph G. We say that u is connected
to v if G contains a (u – v) path. The graph G is connected, if u is connected
to v for every pair u, v of vertices of G.

Disconnection: A graph G is disconnected, if there exists two vertices u and
v for which there is no (u – v) path.

Component: A subgraph H of a graph G is called a component of G if H
is a maximal connected subgraph of G and component is denoted by (G).

Note: If (G) > 1, then G is disconnected.

NOTES

Self-Instructional
Material 229

Cut Sets and
Connectivity of Graphs

For example,

Fig. 14.7 Connected and Disconnected Graphs

Graph (i) is connected and (ii) is disconnected (Refer Figure 14.7).
Note that graph (ii) has 3 components.

Connectedness in Directed Graph

Strongly Connected: A directed graph is strongly connected if there is a path
from u to v and v to u, whenever u and v are vertices in the graph.
Weakly Connected: A directed graph is weakly connected if there is a path
between any two vertices in the underlying undirected graph.
Unilaterally Connected: A directed graph is said to be unilaterally connected if
in the two vertices u and v, there exists a directed path either from u to v or from
v to u.
For example, Figure 14.8 represents the various types of connected graphs.

Fig. 14.8 Connected Graphs

G1 is weakly connected; G2 unilaterally connected and G3 is strongly
connected.

Cut-Sets and Connectivity of Graphs

Let G be a connected graph. Let us recollect the definition of cut-edge (bridge)
and cut-vertex. If G contains an edge e such that G–e is disconnected, then e is a
bridge of G. Further, if G contains a vertex v such that G–v is disconnected, then
v is a cut-vertex of G.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
230 Material

Definition

Edge Cut-Set: A subset S of the edge set of a connected graph G is called an
edge cut-set or cut-set of G if,

(i) G – S is disconnected.

(ii) G – S1 is connected for every proper subset S1 of S.

Vertex Cut-Set: A subset u of the vertex set of G is called a vertex cut-
set if,

(i) G – u is disconnected.

(ii) G – u1 is connected for every proper subset u1 of u.

For example,

(i) S = {e1, e4, e6, e8} is a cut-set.

(ii) u = {v1, v3, v5} is a vertex-cut-set.

Note: For a connected graph, there may be more than one cut-set.
For example, consider the above graph G. Some cut-sets of G are,

S1 = {e1, e4, e6, e8}

S2 = {e1, e2}, S3 = {e1, e3, e9}

From the above note, we are forced to introduce two more parameters for
graphs viz. edge-connectivity (G) and vertex connectivity k(G).

NOTES

Self-Instructional
Material 231

Cut Sets and
Connectivity of Graphs

Edge Connectivity: The edge connectivity (G) of a graph is the minimum
cardinality of a set S of edges of G such that G – S is disconnected, i.e., the
edge (line) connectivity of a connected graph is the number of edges in a
minimum cut-set in the graph (Refer Figure 14.9).

For example,

Fig. 14.9 Edge Connectivity

Notes:

1. If G is a tree, then (G) = 1.

2. G has (G) = 0 iff G is disconnected or trivial.
Vertex Connectivity: The vertex connectivity K(G) of a graph G is the minimum
number of vertices whose deletion makes G a disconnected or trivial graph, i.e.,
the number of vertices in a minimum vertex cut is called the connectivity of the
graph (Refer Figure 14.10).
For example,

Fig. 14.10 Vertex Connectivity

Theorem 14.6: For every graph G, K(G) (G) (G).
Proof: Let v be a vertex of G with minimum degree, i.e., d(v) = (G).
Removing (G) edges of G incident with v produces a graph G1, in which
v is isolated. Clearly, G is disconnected or trivial.

(G) (G) ...(14.3)

Corollary:K(G) (G)

If, (G) = 0, then G is disconnected.

K(G) = 0.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
232 Material

If (G) = 1, then G is a connected graph containing a cut-edge (bridge).
Therefore, either G is isomorphic to K2 or G is a connected graph having
atleast one cut-vertex.

In both cases, K(G) = 1.
Now, let us assume that (G) 2. Let S be a cutset of G with (G) edges
and e = xy be an edge in S. If the edges of S – {e} are deleted from G, the
resulting subgraph H1 is connected and contains e as a cut-edge. Now select
an incident vertex different from x and y for each and every edge in S – {e}.
Remove these vertices from H1, the resulting subgraph H2 is disconnected,
then

K(G) (G) – 1 < (G)
Suppose the subgraph H2 is connected, then H2 is isomorphic to K2 or the
subgraph H2 has a cut-vertex, since H2 is an induced subgraph of H1. In any case,
there exists a vertex of H2 whose removal results in a disconnected graph.
Therefore,

K(G) (G) ...(14.4)

From Equations (14.3) and (14.4), K(G) (G) (G)

In this figure, K(G) = 1; (G) = 3 and (G) = 3.
n-edge Connected: A graph G is n-edge connected (n 1) if (G) n and G
is n-connected if K(G) n.

14.7 EULER GRAPH

A trail that traverses every edge of G is called an Euler trail of G. A circuit (tour) of
G is a closed walk that traverses each edge of G atleast once. An Euler tour is a tour
which traverses each edge exactly once. A graph is Eulerian if it contains an Euler
tour.
Theorem 14.7: A connected graph is Eulerian iff it has no vertices of odd degree.
Proof: Let G be Eulerian and let C be an Euler tour of G, which begins and ends
at some vertex u.
Claim: G has no vertices of odd degree, i.e., to prove that every vertex of G is

NOTES

Self-Instructional
Material 233

Cut Sets and
Connectivity of Graphs

even. Consider a vertex .uw Since w is neither the first nor the last vertex of C,
each time w is encountered, it is reached by some edge and left by another edge.
Hence each occurrence of w in C contributes 2 to its degree. Thus w is of even
degree. This is true for all internal vertices of C. The initial occurrence and final
occurrence of the vertex u in C contributes 1 to the degree of u. Therefore, every
vertex of G is of even degree.

Conversely, let us assume that every vertex of a connected graph G is even.
Claim: G is Eulerian.

Suppose G be a connected non-Eulerian graph with no vertices of odd
degree.

Among such graphs, choose one, say G having least number of edges.
Since, each vertex of G has atleast two edges, G contains a trail. Let C be

a closed trail of maximum possible length in G. By assumption, C is not a Euler
circuit of G and hence)(CEG has edges.

Therefore,)(CEG has some component G with edges. Since C itself is
Eulerian, degree of every vertex in C is even. Hence degree of every vertex in

)(CEG is also even. Therefore degree of every vertex in G is even. Since
() ()E G E G .

G is Eulerian and hence G has an Euler circuit (tour) say C . Since G is
connected, there is a vertex v in)()(CVCV and we may assume without loss of
generality that v is the initial and the terminal vertex of both circuits C and .C
Now)(CC is a closed trail of G with).()(CECCE This contradicts the
choice of C. Hence, every non-empty connected graph with no vertices of odd
degree is Eulerian.
For example,

Fig. 14.11 Eulerian Graphs

In Figure 14.11 G and H are Eulerian graphs.

Theorem 14.8: A connected graph G has an Eulerian trail iff G has exactly two odd
vertices.

Proof: Let G be a connected graph with an Eulerian (u – v) trail. By the similar
argument in the previous theorem, we conclude that all the vertices on the trail
except u and v, have even degree. Conversely, let G be connected graph with two
odd vertices u and v. Let G be the graph obtain from G by adding a new edge e

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
234 Material

= uv between u and v. By applying the previous theorem to G , we can obtained
an Eulerian tour in which the edge e is the first edge. Hence, this Eulerian trail of G
can be obtained that starts at v and ends at u. Therefore, G has an Eulerian trail.

14.7.1 Eulerian Digraphs
An Eulerian trail of a connected directed graph D, is a trail of D that contains all
the edges of D; while an Eulerian circuit of D, is a circuit which contains every
edges of D. A directed graph that contains an Eulerian circuit is called Eulerian
digraph (Refer Figure 14.12).

For example,

Fig. 14.12 Eulerian Digraphs

Theorem 14.9: Let D be a connected directed graph. D is Eulerian iff d+ (v) = d–

(v), ,v G G is called balanced digraph.
Proof: Let D be an Euler directed graph. Then D contains an Euler circuit C with
common initial and terminal vertex v. Let bu be the number of occurrence of an
internal vertex u in C.

Whenever C enters u through some edge incident into u, there is another
edge incident out of u through which C leaves u. Thus, each occurrence of u
contributes one in-degree and one out-degree. Moreover, C contains all the edges
of D. Thus,

() () .d u d u bu Similarly () ()d v d v

Hence, () (), ()d v d v v V D

Conversely, suppose the connected digraph D is balanced. Then, for each
vertex u, 0)()(udud . Start with an arbitrary vertex .0)(, 11 udu There
exists an edge, incident out of u1. Let u2 be the terminal vertex of this edge,

.0)(2ud Hence, there exists an edge, incident out of u2. Continuing like this, we
reach a vertex which has been traversed directly. Thus, we obtain a directed
circuit C1 in D. If),()(1 DECE then, C1 is the required Euler circuit. If not,
i.e.,),()(1 DECE then remove all the edge of C1 from D to obtain a spanning

NOTES

Self-Instructional
Material 235

Cut Sets and
Connectivity of Graphs

subgraph D1. Since D is balanced, D1 is also balanced. Applying the above process
to D1, we will obtain a circuit C2 in D1. If E(D) = E(C1) E(C2) and C1 then C2
can be combined to obtain an Euler circuit in D1. Otherwise, we remove the edges
of C2 from D1 to obtain a spanning subgraph D2 of D. We repeat the above
process in D2 and after a finite number of steps, we obtain edge disjoint circuits
C1, C2,…, Ck such that).(...)()()(21 kCECECEDE Since D is connected,
any two of these cycles have a common vertex. Then the circuits C1, C2,…,Ck can
be combined to obtain an Euler circuit in D. Hence, D is an Eulergraph.

14.8 HAMILTONIAN CIRCUITS AND PATHS

In 1857, Sir William Rowan Hamilton invented a game called, Around The World.
In this game, a solid regular dodecahedron (20 vertices, 30 edges and 12 faces)
and a supply of string is given. Every vertex is given the name of an important city.
The objective of the game is to find a route along the edges of dodecahedron that
visits every city exactly once and terminates where it started.

The graph D is a dodecahedron.
Another famous problem is ‘The Knight’s Puzzle’, Is it possible for a knight

to tour the chess board, i.e., visit each square exactly once and return to its initial
square?

It can be represented by a graph G, where the vertices ui corresponds to
squares Si of the chess board and uj is adjacent to ui, iff it is possible for a knight
to proceed from Si to Sj in a single move.

To solve ‘Around The World’ and ‘Knight’s Puzzle’, we must determine if
the given graph is Hamiltonian.

A path that contains every vertex of G is called a Hamilton path of G. Similarly,
a Hamilton cycle of G is a cycle that contains every vertex of G (in other words
spanning cycle). A graph is Hamiltonian, if it contains a Hamilton cycle or spanning
cycle.
Example 14.2: Prove that kn has a Hamiltonian circuit, .3n

Solution: Let us construct the Hamiltonian circuit in)3(nkn as follows: Choose
a vertex arbitrarily in kn and beginning the Hamiltonian circuit at this vertex. Such
a circuit can be built by traversing vertices in any order, as long as the path begins
and terminates at the same vertex and visits each other vertex exactly once. This is
possible in kn, since every vertex is adjacent to all other vertices. Thus, k1, k2 has
only hamiltonian path, not circuit.

Graphical: A sequence d = (d1, d2,...,dn) is graphical if there exists a simple
undirected graph on n vertices with the degrees of the vertices d1, d2,…,dn,
respectively.

For example, A graph with degree sequence (4, 4, 3, 2, 2, 1)

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
236 Material

Fig. 14.13 Graph with Degree Sequence Construction

Closure: A closure (CG) of a n-vertex graph G is a graph from G by recursively
joining pairs of non-adjacent vertices whose degree sum is atleast n until no such
pair remains.

For example,

Fig. 14.14 Constructing a closure of a graph

Important Theorems

Theorem 14.10: Let G be a n-vertex graph. Suppose G1 and G2 are two graphs
obtained from G by recursively joining pairs of non-adjacent vertices whose degree
sum is atleast n. Then, G1 = G2. In other words, C(G), the closure of a graph G
is unique.
Proof: Let e1, e2,…,ek and f1, f2, f3,…,fe be the edges added to G to obtain
G1 and G2, respectively. We have to prove that every ei)1(ki is an edge of
G2 and)1(ljf j is an edge of G1. Suppose that some edge in the sequence
e1, e2,...,ek does not belong to G2. Let p be the smallest positive integer, such
that ep+1 is not an edge of G2. Let ep+1 = uv. Let H = G + {e1, e2,...,ep}. Then
H is a sub-graph of G1 and G2. By the construction of G1,

() ()H Hd u d v n

Therefore, 2 2() () () ()G G H Hd u d v d u d v n

This is a contradiction, since u and v are non-adjacent in G2. Therefore,
each ei is an edge of G2. Similarly, each fj belongs to G1. Hence, G1 = G2.
Theorem 14.11: A graph G is Hamiltonian, iff its closure C(G) is Hamiltonian.
Proof: Let e1, e2,…,en be edges, added to G, to obtain its closure C(G). Let Gi
be the graph obtained from G by adding the edge ei.

NOTES

Self-Instructional
Material 237

Cut Sets and
Connectivity of Graphs

By repeated application of Example 14.2.
G is Hamiltonian C (G) is Hamiltonian.

Corollary 1: Let G be a graph with atleast 3 vertices. If C(G) kn,)3(n then
G is Hamiltonian.
Proof: By result 1, kn is Hamiltonian. Since)(,)(GCkGC n is Hamiltonian and
hence G is Hamiltonian.
Corollary 2: Let G be a graph with atleast 3 vertices if),3()()(nnvdud for
all pairs u and v of non-adjacent vertices of G, then G is Hamiltonian.
Proof: Let G be a graph with atleast 3 vertices. Given that)3()()(nnvdud
for all pairs of non-adjacent vertices of G. Hence we can add edges between such
pair of vertices to obtain C(G). Since C(G) is complete by Corallary 1, G is
Hamiltonian.
For example,

Fig. 14.15 Hamiltonian and Non-Hamiltonian Graphs

In Figure 14.15, G Hamiltonian graph and H non-Hamiltonian graph.

Theorem 14.12: If G is Hamiltonian then, for every non-empty proper subset S
of V, ||)(ssGw

Proof: Let G be a Hamiltonian graph and S be a proper subset of V. Since G is
Hamiltonian, G has a Hamiltonian cycle C. Suppose ,)(nSG where G1,
G2,...,Gn are the components of G – S. Let)1(viui be the last vertex of C
that belongs to Gi and let vi be the vertex that immediately follows ui on C.
Clearly iv S for each i and .for kjvv kj Hence, there are atleast as many
vertices in S as components in G – S.

i.e., () | | .G S S

Weight Graph: A graph G is called a weight graph if every edge of G is assigned
with a real number.

Travelling Salesmen Problem (TSP)
Suppose that a salesman is expected to take a trip through a given collection of n
cities)3(n . What route should he take to minimize the total distance travelled?
This can be represented as a weight graph. Let G be a connected weight graph
whose vertices represent the cities to be visited and let the weight of an edge vi vj
be the distance between the cities vi and vj. Now TSP is equivalent to finding a
minimum Hamiltonian cycle in a connected weight graph.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
238 Material

Check Your Progress

8. Interpret the fundamental circuits.
9. Define the cut-sets and connectivity of graph.

10. Illustrate the Euler graph.
11. Describe the Eulerian diagraphs.
12. Explain the Hamiltonian circuits and paths.

14.9 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. In graph theory, a cut is a partition of the vertices of a graph into two
disjoint subsets. Any cut determines a cut-set, the set of edges that have
one endpoint in each subset of the partition. These edges are said to cross
the cut. In a connected graph, each cut-set determines a unique cut, and in
some cases cuts are identified with their cut-sets rather than with their vertex
partitions.

2. Cut-Vertex: A vertex v in a graph G is said to be a cut-vertex if
w(G – v) > w(G), where w(G) is the component of G and component is a
maximal connected subgraph of G, i.e., a vertex v of a connected graph is
a cut-vertex, iff (G – v) is disconnected.

3. Cut-Edge: An edge e in a graph G is said to be a Cut-edge, if (G – e) is
disconnected.

4. Edge Cut-Set: A subset S of the edge set of a connected graph G is called
an edge cut-set or cut-set of G if
(i) G – S is disconnected.
(ii) G – S1 is connected for every proper subset S1 of S.

5. Vertex Cut-Set: A subset u of the vertex set of G is called a vertex cut-set
if
(i) G – u is disconnected
(ii) G – u1 is connected for every proper subset u1 of u.

6. Edge Connectivity: The edge connectivity (G) of a graph is the minimum
cardinality of a set S of edges of G such that G–S is disconnected, i.e., the
edge (line) connectivity of a connected graph is the number of edges in a
minimum cut-set in the graph.

7. Vertex Connectivity: The vertex connectivity K(G) of a graph G is the
minimum number of vertices whose deletion makes G a disconnected or

NOTES

Self-Instructional
Material 239

Cut Sets and
Connectivity of Graphs

trivial graph, i.e., the number of vertices in a minimum vertex cut is called
the connectivity of the graph.

8. Let T be a spanning tree in a connected graph G. When a chord is added to
a spanning tree T then it forms exactly one circuit. Such a circuit is termed
as a fundamental circuit.

9. Let G be a connected graph. Let us recollect the definition of cut-edge
(bridge) and cut-vertex. If G contains an edge e such that G–e is
disconnected, then e is a bridge of G. Further, if G contains a vertex v such
that G–v is disconnected, then v is a cut-vertex of G.

10. A trail that traverses every edge of G is called an Euler trail of G. A circuit
(tour) of G is a closed walk that traverses each edge of G atleast once. An
Euler tour is a tour which traverses each edge exactly once. A graph is Eulerian
if it contains an Euler tour.

11. An Eulerian trail of a connected directed graph D, is a trail of D that contains
all the edges of D; while an Eulerian circuit of D, is a circuit which contains
every edges of D. A directed graph that contains an Eulerian circuit is called
Eulerian digraph.

12. A path that contains every vertex of G is called a Hamilton path of G. Similarly,
a Hamilton cycle of G is a cycle that contains every vertex of G (in other
words spanning cycle). A graph is Hamiltonian, if it contains a Hamilton
cycle or spanning cycle.

14.10 SUMMARY

In graph theory, a cut is a partition of the vertices of a graph into two disjoint
subsets. Any cut determines a cut-set, the set of edges that have one endpoint
in each subset of the partition. These edges are said to cross the cut. In a
connected graph, each cut-set determines a unique cut, and in some cases
cuts are identified with their cut-sets rather than with their vertex partitions.
Cut-Vertex: A vertex v in a graph G is said to be a cut-vertex if
w(G – v) > w(G), where w(G) is the component of G and component is a
maximal connected subgraph of G, i.e., a vertex v of a connected graph is
a cut-vertex, iff (G – v) is disconnected.
Cut-Edge: An edge e in a graph G is said to be a Cut-edge, if (G – e) is
disconnected.
Edge Cut-Set: A subset S of the edge set of a connected graph G is called
an edge cut-set or cut-set of G if
(i) G – S is disconnected.
(ii) G – S1 is connected for every proper subset S1 of S.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
240 Material

Vertex Cut-Set: A subset u of the vertex set of G is called a vertex cut-set
if
(i) G – u is disconnected
(ii) G – u1 is connected for every proper subset u1 of u.
Edge Connectivity: The edge connectivity (G) of a graph is the minimum
cardinality of a set S of edges of G such that G–S is disconnected, i.e., the
edge (line) connectivity of a connected graph is the number of edges in a
minimum cut-set in the graph.
Vertex Connectivity: The vertex connectivity K(G) of a graph G is the
minimum number of vertices whose deletion makes G a disconnected or
trivial graph, i.e., the number of vertices in a minimum vertex cut is called
the connectivity of the graph.
Let T be a spanning tree in a connected graph G. When a chord is added to
a spanning tree T then it forms exactly one circuit. Such a circuit is termed
as a fundamental circuit.
Let G be a connected graph. Let us recollect the definition of cut-edge
(bridge) and cut-vertex. If G contains an edge e such that G–e is
disconnected, then e is a bridge of G. Further, if G contains a vertex v such
that G–v is disconnected, then v is a cut-vertex of G.
A trail that traverses every edge of G is called an Euler trail of G. A circuit
(tour) of G is a closed walk that traverses each edge of G atleast once. An
Euler tour is a tour which traverses each edge exactly once. A graph is Eulerian
if it contains an Euler tour.
An Eulerian trail of a connected directed graph D, is a trail of D that contains
all the edges of D; while an Eulerian circuit of D, is a circuit which contains
every edges of D. A directed graph that contains an Eulerian circuit is called
Eulerian digraph.
A path that contains every vertex of G is called a Hamilton path of G.
Similarly, a Hamilton cycle of G is a cycle that contains every vertex of G
(in other words spanning cycle). A graph is Hamiltonian, if it contains a
Hamilton cycle or spanning cycle.

14.11 KEY WORDS

Cut set: In graph theory, a cut is a partition of the vertices of a graph into
two disjoint subset. Any cut determines a cut-set, the set of degree that
have one endpoint in each subset of the partition.
Cut-vertex: A vertex v in a graph G is said to be a cut-vertex if ω(G v)
ω(G), where ω(G) is the component of G and component is a maximal
connected subgraph of G, i.e., a vertex v of a connected graph is a cut-
vertex, iff (G v) is disconnected.

NOTES

Self-Instructional
Material 241

Cut Sets and
Connectivity of Graphs

Cut-edge: An edge e in a graph G is said to be a cut-edge, if (G e is
disconnected.
Vertex connectivity: The vertex connectivity K(G) of a graph G is the
minimum number of vertices whose deletion makes G a disconnected or
trivial graph, i.e., the number of vertices in a minimum vertex cut is called
the connectivity of the graph.

14.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the cut set.
2. What do you understand by the cut vertex?
3. Explain the cut edge.
4. E laborate on the edge cut-set.
5. Analyse the vertex cut-set.
6. Illustrate the fundamental circuit.
7. Interpret the cut-sets and connectivity of graph.
8. Explain the Euler graph.
9. Define the Eulerian diagraphs.

10. State the Hamiltonian circuits and paths.

Long-Answer Questions

1. Discuss briefly cut set. Give appropriate example.
2. Explain the properties of a cut sets.
3. Elaborate on the all cut set in a graph.
4. Describe briefly the fundamental circuits and cut set.
5. Define connectivity and separability.
6. Illustrate the Euler graph.
7. Analyse the Hamiltonian circuits and paths.

14.13 FURTHER READINGS

Venkataraman, Dr. M. K., Dr. N. Sridharan and N. Chandrasekaran. 2004.
Discrete Mathematics. Chennai: The National Publishing Company.

Tremblay, Jean Paul and R Manohar. 2004. Discrete Mathematical Structures
With Applications To Computer Science. New York: McGraw-Hill
Interamericana.

Cut Sets and
Connectivity of Graphs

NOTES

Self-Instructional
242 Material

Arumugam, S. and S. Ramachandran. 2001. Invitation to Graph Theory.
Chennai: Scitech Publications (India) Pvt. Ltd.

Balakrishnan, V. K. 2000. Introductory Discrete Mathematics. New York: Dover
Publications Inc.

Choudum, S. A. 1987. A First Course in Graph Theory. New Delhi: MacMillan
India Ltd.

Haggard, Gary, John Schlipf and Sue Whiteside. 2006. Discrete Mathematics
for Computer Science. California: Thomson Learning (Thomson Brooks/
Cole).

Kolman, Bernand, Roberty C. Busby and Sharn Cutter Ross. 2006. Discrete
Mathematical Structures. London (UK): Pearson Education.

Johnsonbaugh, Richard. 2000. Discrete Mathematics, 5th Edition. London (UK):
Pearson Education.

Iyengar, N. Ch. S. N., V. M. Chandrasekaran, K. A. Venkatesh and P. S.
Arunachalam. 2007. Discrete Mathematics. New Delhi: Vikas Publishing
House Pvt. Ltd.

Mott, J. L. 2007. Discrete Mathematics for Computer Scientists, 2nd Edition.
New Delhi: Prentice Hall of India Pvt. Ltd.

Liu, C. L. 1985. Elements of Discrete Mathematics, 2nd Edition. New York:
McGraw-Hill Higher Education.

Rosen, Kenneth. 2007. Discrete Mathematics and Its Applications, 6th Edition.
New York: McGraw-Hill Higher Education.

	Prelims
	Int
	U1
	U2
	U3
	U4
	U5
	U6
	U7
	U8
	U9
	U10
	U11
	U12
	U13
	U14

